Brake subharmonic solutions of subquadratic Hamiltonian systems

Chong Li

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 405 -418.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 405 -418. DOI: 10.1007/s11401-016-0970-8
Article

Brake subharmonic solutions of subquadratic Hamiltonian systems

Author information +
History +
PDF

Abstract

The author mainly uses the Galerkin approximation method and the iteration inequalities of the L-Maslov type index theory to study the properties of brake subharmonic solutions for the Hamiltonian systems ż(t) = J∇H(t, z(t)), where $H(t,z) = \tfrac{1}{2}(\hat B(t)z,z) + \hat H(t,z),\hat B(t)$, is a semipositive symmetric continuous matrix and Ĥ is unbounded and not uniformly coercive. It is proved that when the positive integers j and k satisfy the certain conditions, there exists a jT-periodic nonconstant brake solution zj such that zj and zkj are distinct.

Keywords

Brake subharmonic solution / L-Maslov type index / Hamiltonian systems

Cite this article

Download citation ▾
Chong Li. Brake subharmonic solutions of subquadratic Hamiltonian systems. Chinese Annals of Mathematics, Series B, 2016, 37(3): 405-418 DOI:10.1007/s11401-016-0970-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosetti A., Benci V., Long Y.. A note on the existence of multiple brake orbits. Nonlinear Anal. TMA, 1993, 21: 643-649

[2]

Bahri A., Berestycki H.. Forced vibrations of superquadratic Hamiltonian systems. Acta Math., 1984, 152: 143-197

[3]

Benci V.. Closed geodesics for the Jacobi metric and periodic solutions of prescribed energy of natural Hamiltonian systems. Ann. I. H. P. Analyse Nonl., 1984, 1: 401-412

[4]

Benci V., Giannoni F.. A new proof of the existence of a brake orbit, in “Advanced Topics in the Theory of Dynamical Systems”. Notes Rep. Math. Sci. Eng., 1989, 6: 37-49

[5]

Bolotin S.. Libration motions of natural dynamical systems (in Russian). Vestnik Moskov Univ. Ser. I. Mat. Mekh., 1978, 6: 72-77

[6]

Bolotin S., Kozlov V. V.. Librations with many degrees of freedom (in Russian). J. Appl. Math. Mech., 1978, 42: 245-250

[7]

Chang K.. Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Basel, Boston, Berlin: Birkhäuser Verlag

[8]

Ekeland I.. Convexity Method in Hamiltonian Mechanics, 1990, Berlin: Springer-Verlag

[9]

Ekeland I., Hofer H.. Subharmonics of convex Hamiltonian systems. Comm. Pure Appl. Math., 1987, 40: 1-37

[10]

Ghoussoub N.. Location, multiplicity and Morse indices of minimax critical points. J. Reine Angew Math., 1991, 417: 27-76

[11]

Gluck H., Ziller W.. Existence of periodic solutions of conservtive systems, Seminar on Minimal Submanifolds, 1983 65-98

[12]

Groesen E. W. C. v.. Analytical mini-max methods for Hamiltonian brake orbits of prescribed energy. J. Math. Anal. Appl., 1988, 132: 1-12

[13]

Hayashi K.. Periodic solution of classical Hamiltonian systems. Tokyo J. Math., 1983, 6: 473-486

[14]

Li C., Liu C.. Brake subharmonic solutions of first order Hamiltonian systems. Science in China Ser. A, 2010, 53(10): 2719-2732

[15]

Li C., Liu C.. Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory. Chin. Ann. Math. Ser. B, 2008, 29(6): 597-610

[16]

Liu C.. Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions. Pacific J. Math., 2007, 232(1): 233-255

[17]

Liu C.. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv. Non. Stu, 2007, 7: 131-161

[18]

Liu C.. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete Contin. Dyn. Syst., 2010, 27: 337-355

[19]

Liu C.. Subharmonic solutions of Hamiltonian systems. Nonlinear Anal. TMA, 2000, 42: 185-198

[20]

Liu C., Zhang D.. Iteration theory of L-index and multiplicity of brake orbits. J. Diff. Eq., 2014, 257: 1194-1245

[21]

Long Y.. Index Theory for Symplectic Paths with Applications, 2002, Basel, Boston, Berlin: Birkhäuser Verlag

[22]

Long Y., Zhang D., Zhu C.. Multiple brake orbits in bounded convex symmetric domains. Adv. in Math., 2006, 203: 568-635

[23]

McDuff D., Salamon D.. Introduction to Symplectic Topology, 1998, Oxford: Clarendon Press

[24]

Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., 65, AMS, RI, 1986.

[25]

Rabinowitz P. H.. On the existence of periodic solutions for a class of symmetric Hamiltonian systems. Nonlinear Anal. TMA, 1987, 11: 599-611

[26]

Rabinowitz P. H.. On subharmonic solutions of Hamiltonian systems. Comm. Pure Appl. Math., 1980, 33: 609-633

[27]

Seifert H.. Periodische Bewegungen mechanischer systeme. Math. Z., 1948, 51: 197-216

[28]

Silva E. A. B.. Subharmonic solutions for subquadratic Hamiltonian systems. J. Diff. Eq., 1995, 115: 120-145

[29]

Szulkin A.. An index theory and existence of multiple brake orbits for star-shaped Hamiltonian systems. Math. Ann., 1989, 283: 241-255

[30]

Zhang D.. Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems. Discrete Contin. Dyn. Syst., 2015, 35(5): 2227-2272

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/