Analytic Feynman integrals of functionals in a Banach algebra involving the first variation

Hyun Soo Chung , Vu Kim Tuan , Seung Jun Chang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 281 -290.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 281 -290. DOI: 10.1007/s11401-016-0967-3
Article

Analytic Feynman integrals of functionals in a Banach algebra involving the first variation

Author information +
History +
PDF

Abstract

This paper deals with the analytic Feynman integral of functionals on a Wiener space. First the authors establish the existence of the analytic Feynman integrals of functionals in a Banach algebra S α. The authors then obtain a formula for the first variation of integrals. Finally, various analytic Feynman integration formulas involving the first variation are established.

Keywords

Analytic Feynman integral / Banach algebra / First variation / Cameron-Storvick theorem / Wiener space

Cite this article

Download citation ▾
Hyun Soo Chung, Vu Kim Tuan, Seung Jun Chang. Analytic Feynman integrals of functionals in a Banach algebra involving the first variation. Chinese Annals of Mathematics, Series B, 2016, 37(2): 281-290 DOI:10.1007/s11401-016-0967-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cameron R. H., Storvick D. A.. Feynman integral of variation of functionals, Gaussian Random Fields, 1980, Singapore: World Scientific 144-157

[2]

Cameron R. H., Storvick D. A.. Some Banach algebras of analytic Feynman integrable functionals, 1980, Berlin: Springer-Verlag 18-67

[3]

Cameron R. H., Storvick D. A.. Analytic Feynman integral solutions of an integral equation related to the Schrödinger equation. J. Anal. Math., 1980, 38: 34-66

[4]

Cameron R. H., Storvick D. A.. Relationships between the Wiener integral and the analytic Feynman integral. Rend. Circ. Mat. Palermo (2) Suppl., 1987, 17: 117-133

[5]

Chang S. J., Choi J. G., Chung H. S.. The approach to solution of the Schrödinger equation using Fourier-type functionals. J. Korean Math. Soc., 2013, 50: 259-274

[6]

Chang S. J., Chung H. S., Skoug D.. Convolution products, integral transforms and inverse integral transforms of functionals in L 2(C0[0, T]). Integral Transforms Spec. Funct., 2010, 21: 143-151

[7]

Chang K. S., Johnson G. W., Skoug D. L.. The Feynman integral of quadratic potentials depending on two time variables. Pacific J. Math., 1986, 122: 11-33

[8]

Chung H. S., Chang S. J.. Some applications of the spectral theory for the integral transform involving the spectral representation. J. Funct. Space Appl., 2012

[9]

Chung H. S., Choi J. G., Chang S. J.. Conditional integral transforms with related topics. Filomat, 2012, 26: 1147-1158

[10]

Chung H. S., Skoug D., Chang S. J.. A Fubini theorem for integral transforms and convolution products. Int. J. Math., 2013

[11]

Chung H. S., Tuan V. K.. Generalized integral transforms and convolution products on function space. Integral Transforms Spec. Funct., 2011, 22: 573-586

[12]

Chung H. S., Tuan V. K.. Fourier-type functionals on Wiener space. Bull. Korean Math. Soc., 2012, 49: 609-619

[13]

Chung H. S., Tuan V. K.. A sequential analytic Feynman integral of functionals in L 2(C0[0, T]). Integral Transforms Spec. Funct., 2012, 23: 495-502

[14]

Chung H. S., Tuan V. K.. Currigendum: Generalized integral transforms and convolution products on function space. Integral Transforms and Special Functions, 2013, 24: 509-509

[15]

Feynman R. P.. Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys., 1948, 20: 115-142

[16]

Johnson G. W., Skoug D. L.. Scale-invariant measurability in Wiener space. Pacific J. Math., 1979, 83: 157-176

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/