A Riemann-Hilbert approach to the Harry-Dym equation on the line

Yu Xiao , Engui Fan

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 373 -384.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 373 -384. DOI: 10.1007/s11401-016-0966-4
Article

A Riemann-Hilbert approach to the Harry-Dym equation on the line

Author information +
History +
PDF

Abstract

In this paper, the authors consider the Harry-Dym equation on the line with decaying initial value. They construct the solution of the Harry-Dym equation via the solution of a 2 × 2 matrix Riemann-Hilbert problem in the complex plane. Further, one-cusp soliton solution is expressed in terms of the Riemann-Hilbert problem.

Keywords

Harry-Dym equation / Riemann-Hilbert problem / Initial-value problem / One-cusp soliton solution

Cite this article

Download citation ▾
Yu Xiao, Engui Fan. A Riemann-Hilbert approach to the Harry-Dym equation on the line. Chinese Annals of Mathematics, Series B, 2016, 37(3): 373-384 DOI:10.1007/s11401-016-0966-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hereman W., Banerjee P. P., Chatterjee M. R.. Derivation and implicit solution of the Harry-Dym equation and its connections with the Korteweg-de Vries equation. J. Phys. A: Mat. Gen., 1989, 22: 241-255

[2]

Kadanoff L. P.. Exact solutions for the Saffman-Taylor problem with surface tension. Phys. Rev. Lett., 1990, 65: 2986-1990

[3]

Wadati M., Yoshi H.. Ichikawa and Toru Shinizu. Cusp soliton of a new integrable nonlinear evolution equation, Proc. Theor. Phys., 1980, 64: 1959-1967

[4]

Magri F.. A geometrical approach to the nonlinear solvable equations. Nonlinear Evolution Equations and Dynamical Systems Lecture Notes in Physics, 1980, 120: 233-263

[5]

Leo M., Leo R. A., Soliani G. Lie-Backlund symmetries for the Harry-Dym equation. Phys. Rev. D., 1980, 26: 1406-1407

[6]

Rogers C., Nucci M. C.. On reciprocal Backlund transformations and the Korteweg-de Vries hierarchy. Phys. Scr., 1986, 33: 289-292

[7]

Leo M., Leo R. A., Soliani G., Solombrino L.. On the isospectral-eigenvalue problem and the recursion operator of the Harry-Dym equation. Phys. Scr., 1983, 38: 45-51

[8]

Banerjeet P. P., Daoudt F., Hereman W.. A straightforward method for finding implicit solitary wave solutions of nonlinear evolution and wave equations. J. Phys. A: Math. Gen., 1990, 23: 521-536

[9]

Lenells J., Fokas A. S.. On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity, 2009, 22: 11-27

[10]

Boutet de Monvel A., Shepelsky D.. Riemann-Hilbert problem in the inverse scattering for the Camassa-Holm equation on the line. Math. Sci. Res. Inst. Publ., 2008, 55: 53-75

[11]

Boutet de Monvel A., Shepelsky D.. A Riemann-Hilbert approach for the Degasperis-Procesi equation. Nonlinearity, 2013, 26: 2081-2107

[12]

Fokas A. S.. A unified transform method for solving linear and certain nonlinear PDEs. Proc. Roy. Soc. Lond. A, 1997, 453: 1411-1443

[13]

Fokas A. S.. On the integrability of linear and nonlinear partial differential equations. J. Math. Phys., 2000, 41: 4188-4237

[14]

Fokas A. S.. A Unified Approach to Boundary Value Problem. CBMS-NSF Reginal Conference Series in Applied Mathematics, SIAM, 2008

[15]

Lenells J., Fokas A. S.. An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitons. Inver. Prob., 2009, 25: 1-12

[16]

Fokas A. S., Lenells J.. Explicit soliton asymptotics for the Korteweg-de Vries equation on the half-line. Nonlinearity, 2010, 23: 937-976

[17]

Lenells J.. An integrable generalization of the sineCGordon equation on the half-line. IMA J. Appl. Math., 2011, 76: 554-572

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/