Approximate representation of Bergman submodules

Chong Zhao

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 221 -234.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 221 -234. DOI: 10.1007/s11401-016-0964-6
Article

Approximate representation of Bergman submodules

Author information +
History +
PDF

Abstract

In the present paper, the author shows that if a homogeneous submodule M of the Bergman module L a 2(B d) satisfies ${P_M} - \sum\limits_i {{M_{{z^i}}}} {P_M}M_{{z^i}}^* \leqslant \frac{c}{{N + 1}}{P_M}$ for some number c > 0, then there is a sequence {f j} of multipliers and a positive number c′ such that $c'{P_M} \leqslant \sum\limits_j {{M_{{f_j}}}} M_{{f_j}}^* \leqslant {P_M}$, i.e., M is approximately representable. The author also proves that approximately representable homogeneous submodules are p-essentially normal for p > d.

Keywords

Approximate representation / Essential normality / Bergman submodule

Cite this article

Download citation ▾
Chong Zhao. Approximate representation of Bergman submodules. Chinese Annals of Mathematics, Series B, 2016, 37(2): 221-234 DOI:10.1007/s11401-016-0964-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arveson W.. The curvature invariant of a Hilbert module over C[z 1, · · ·, z d]. J. Reine Angew. Math., 2000, 522: 173-236

[2]

Arveson W.. p-summable commutators in dimension d. J. Operator Theory, 2005, 54(1): 101-117

[3]

Arveson W.. Quotients of standard Hilbert modules. Trans. Amer. Math. Soc., 2007, 359(12): 6027-6055

[4]

Douglas R.. Essentially reductive Hilbert modules. J. Oper. Theory, 2006, 55: 117-133

[5]

Douglas R., Sarkar J.. Essentially reductive weighted shift Hilbert modules. J. Oper. Theory, 2011, 65: 101-133

[6]

Douglas R., Wang K.. A harmonic analysis approach to essential normality of principal submodules. J. Funct. Anal., 2011, 261(11): 3155-3180

[7]

Douglas R., Wang K.. Some remarks on essentially normal submodules, Concrete Operators, Spectral Theory, 2014, Basel: Springer-Verlag 159-170

[8]

Engliš M.. Density of algebras generated by Topelitz operators on Bergman spaces. Ark. Mat., 1992, 30(1–2): 227-240

[9]

Engliš M.. Operator models and Arveson’s curvature invariant, Topological Algebras, Their Applications, and Related Topics. Banach Center Publ., 2003, 67: 171-183

[10]

Engliš M.. Some problems in operator theory on bounded symmetric domains. Acta Appl. Math., 2004, 81(1): 51-71

[11]

Engliš, M. and Eschmeier, J., Geometric Arveson-Douglas conjecture, arXiv:1312.6777 [math.FA].

[12]

Eschmeier J.. Essential normality of homogeneous submodules. Int. Eq. Oper. Ther., 2011, 69(2): 171-182

[13]

Fang Q., Xia J.. Commutators and localization on the Drury-Arveson space. J. Funct. Anal., 2011, 260(3): 639-673

[14]

Fang Q., Xia J.. Essential normality of polynomial-generated submodules: Hardy space and beyond. J. Funct. Anal., 2013, 265(12): 2991-3008

[15]

Gleason J., Richter S., Sundberg C.. On the index of invariant subspaces in spaces of analytic functions in several complex variables. J. Reine. Angew. Math., 2005, 587: 49-76

[16]

Guo K.. Defect oeprators for submodules of H2 d. J. Reine Angew. Math., 2004, 573: 181-209

[17]

Guo K., Wang K.. Essentially normal Hilbert modules and K-homology. Math. Ann., 2008, 340(4): 907-934

[18]

Guo K., andWang K.. Essentially normal Hilbert modules and K-homology II: Quasi-homogeneous Hilbert modules over the two dimensional unit ball. J. Ramanujan Math. Soc., 2007, 22(3): 259-281

[19]

Guo K., Zhao C.. p-essential normality of quasi-homogeneous Drury-Arveson submodules. J. London Math. Soc., 2013, 87(3): 899-916

[20]

Kennedy M.. Essential normality and decomposability of homogeneous submodules. Trans. Amer. Math. Soc., 2015, 367(1): 293-311

[21]

Kennedy M., Shalit O.. Essential normality and the decomposability of algebraic varieties. New York J. Math., 2012, 18: 877-890

[22]

McCullough S.. Invariant subspaces and Nevanlinna-Pick kernels. J. Funct. Anal., 2000, 178(1): 226-249

[23]

Rudin W.. Function theory in the unit ball of Cn, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 1980, New York, Berlin: Springer-Verlag

[24]

Shalit O.. Stable polynomial division and essential normality of graded Hilbert modules. J. London Math. Soc., 2010, 83: 273-289

[25]

Zhao C., Yu J.. Trace estimation of commutators of multiplication operators on function spaces. Illinois J. Math., 2012, 56(2): 617-632

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/