On the number of integral ideals in two different quadratic number fields

Zhishan Yang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 595 -606.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 595 -606. DOI: 10.1007/s11401-016-0963-7
Article

On the number of integral ideals in two different quadratic number fields

Author information +
History +
PDF

Abstract

Let K be an algebraic number field of finite degree over the rational field Q, and a K(n) the number of integral ideals in K with norm n. When K is a Galois extension over Q, many authors contribute to the integral power sums of a K(n), $\sum\limits_{n \leqslant x} {a\kappa {{\left( n \right)}^l}} ,\;l = 1,\;2,\;3, \ldots $. This paper is interested in the distribution of integral ideals concerning different number fields. The author is able to establish asymptotic formulae for the convolution sum ${\sum\limits_{n \leqslant x} {a{\kappa _1}{{\left( {{n^j}} \right)}^l}a{\kappa _2}\left( {{n^j}} \right)} ^l},\;\;j = 1,\;2,\;\;l = \;2,\;3, \ldots $, where K 1 and K 2 are two different quadratic fields.

Keywords

Asymptotic formula / Integral ideal / Number field

Cite this article

Download citation ▾
Zhishan Yang. On the number of integral ideals in two different quadratic number fields. Chinese Annals of Mathematics, Series B, 2016, 37(4): 595-606 DOI:10.1007/s11401-016-0963-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chandraseknaran K., Good A.. On the number of integeral ideals in Galois extensions. Monatsh. Math., 1983, 95: 99-109

[2]

Chandraseknaran K., Narasimhan R.. The approximate functional equation for a class of zetafunctions. Math. Ann., 1963, 152: 30-64

[3]

Fomenko O. M.. Distribution of lattice points on surfaces of second order. J. Math. Sci., 1997, 83: 795-815

[4]

Fomenko O. M.. The mean number of solutions of certain congruences. J. Math. Sci., 2001, 105: 2257-2268

[5]

Heath-Brown D. R.. The twelfth power moment of the Rimeann zeta-function. Q. J. Math., 1978, 29: 443-462

[6]

Heath-Brown D. R.. The growth rate of the Dedekind zeta-function on the critical line. Acta Arith., 1988, 49: 323-339

[7]

Hecke E.. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Math. Z., 1918, 1: 357-376

[8]

Huxley M. N., Watt N.. The number of ideals in a quadratic field II. Israel J. Math. Part A, 2000, 120: 125-153

[9]

Ivić A.. The Riemann Zeta-Function, Theory and Applications, 1985, New York: John Wiley & Sons

[10]

Iwaniec H., Kowalski E.. Analytic Number Theory, Amer. Math. Soc. Colloquium Publ., 2004, Providence: Amer. Math. Soc.

[11]

Kubilus I. P.. On some problems in geometry of prime numbers. Math. Sbornik, 1952, 31: 507-542

[12]

Landau E.. Einführung in Die Elementare umd Analytische Theorie der Algebraischen Zahlen und der Ideals, 1949, New York: Chelsea Publishing Company

[13]

Linnik Y.u. V.. Private communications, 1950

[14]

G. S., Wang Y. H.. Note on the number of integral ideals in Galois extensions. Science China: Mathematics, 2010, 53: 2417-2424

[15]

G. S., Yang Z. S.. The average behavior of the coefficients of Dedekind zeta functions over square numbers. Journal of Number Theory, 2011, 131: 1924-1938

[16]

Meurman, T., The mean twelfth power of Dirichlet L-functions on the critical line, Ann. Acd. Sci. Fenn. Ser. A., 52, 1984, 44 pages.

[17]

Müller W.. On the distribution of ideals in cubic number fields. Monatsh. Math., 1988, 106: 211-219

[18]

Nowak W. G.. On the distribution of integral ideals in algebraic number theory fields. Math. Nachr., 1993, 161: 59-74

[19]

Pan C. D., Pan C. B.. Fundamentals of Analytic Number Theory, 1991, Beijing: Science Press

[20]

Swinnerton-Dyer H. P. F.. A Brief Guide to Algebraic Number Theory, London Mathematical Society Student Texts, 2001, Cambridge: Cambridge University Press

[21]

Weber H.. Lehrbuch der Algebra, 1896, Braunschweig: Druck und Verlag von Friedrich Vieweg und Sohn

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/