Twistor spinors and quasi-twistor spinors

Yongfa Chen

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 451 -464.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 451 -464. DOI: 10.1007/s11401-016-0961-9
Article

Twistor spinors and quasi-twistor spinors

Author information +
History +
PDF

Abstract

The author studies the properties and applications of quasi-Killing spinors and quasi-twistor spinors and obtains some vanishing theorems. In particular, the author classifies all the types of quasi-twistor spinors on closed Riemannian spin manifolds. As a consequence, it is known that on a locally decomposable closed spin manifold with nonzero Ricci curvature, the space of twistor spinors is trivial. Some integrability condition for twistor spinors is also obtained.

Keywords

Dirac operator / Twistor spinor / Scalar curvature

Cite this article

Download citation ▾
Yongfa Chen. Twistor spinors and quasi-twistor spinors. Chinese Annals of Mathematics, Series B, 2016, 37(3): 451-464 DOI:10.1007/s11401-016-0961-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lawson H. B., Michelsohn M. L.. Spin Geometry, Princeton Math Series, 1989, Princeton: Princeton University Press 38

[2]

Bär C.. Real Killing spinors and holonomy. Comm. Math. Phys., 1993, 154: 509-521

[3]

Lichnerowicz A.. Killing spinors. twistor-spinors and Hijazi inequality, J. Geom. Phys., 1988, 5: 2-18

[4]

Kühnel W., Rademacher H. B.. Asymptotically Euclidean manifolds and twistor spinors. Comm. Math. Phys., 1998, 196: 67-76

[5]

Lichnerowicz A.. Spin manifolds. Killing spinors and the universality of the Hijazi inequality, Lett. Math. Phys., 1987, 3: 331-344

[6]

Hijazi O.. A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys., 1986, 104: 151-162

[7]

Kirchberg K. D.. An estimation for the first eigenvalue of the Dirac operator in closed Kähler manifolds of positive scalar curvature. Ann. Glob. Ann. Geom., 1986, 3: 291-325

[8]

Hijazi O.. Eigenvalues of the Dirac operator on compact Kähler manifolds. Comm. Math. Phys., 1994, 160(3): 563-579

[9]

Kramer W., Semmelmann U., Weingart G.. Eigenvalue estimates for the Dirac operator on quaternionic Kähler manifolds. Math. Z., 1999, 230: 727-751

[10]

Kim, E. C., Lower bounds of the Dirac eigenvalues on compact Riemannian spin manifolds with locally product structure. arXiv: math.DG/0402427

[11]

Kirchberg K. D.. Properties of Kählerian twistor spinors and vanishing theorems. Math. Ann., 1992, 293(2): 349-369

[12]

Alexandrov B., Grantcharov G., Ivanov S.. An estimate for the first eigenvalue of the Dirac operator on compact Riemannian spin manifold admitting a parallel one-form. J. Geom. Phys., 1998, 28: 263-270

[13]

Yano K., Kon M.. Structures on Manifolds, 1984, Singapore: World Sci.

[14]

Alexandrov B.. The first eigenvalue of the Dirac operator on locally reducible Riemannian manifolds. J. Geom. Phys., 2007, 57(2): 467-472

[15]

Moroianu A., Ornea L.. Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length. C. R. Math. Acad. Sci. Paris, 2004, 338: 561-564

[16]

Bär C.. Spectral bounds for Dirac operators on open manifolds. Ann. Glob. Anal. Geom., 2009, 36: 67-79

[17]

Friedrich T.. Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 2000, Providence, RI: American Mathematical Society 25

[18]

Hijazi O.. Lower bounds for the eigenvalues of the Dirac operator. J. Geom. Phys., 1995, 16: 27-38

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/