A note on the maximal functions on weighted harmonic AN groups

Yurong Wu , Shiliang Zhao

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 193 -198.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 193 -198. DOI: 10.1007/s11401-016-0960-x
Article

A note on the maximal functions on weighted harmonic AN groups

Author information +
History +
PDF

Abstract

In this paper, the authors point out that the methods used by Li (2004, 2005, 2007) can be applied to study maximal functions on weighted harmonic AN groups.

Keywords

Hardy-Littlewood maximal function / Harmonic AN groups / Lorentz spaces

Cite this article

Download citation ▾
Yurong Wu, Shiliang Zhao. A note on the maximal functions on weighted harmonic AN groups. Chinese Annals of Mathematics, Series B, 2016, 37(2): 193-198 DOI:10.1007/s11401-016-0960-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anker J. P., Damek E., Yacoub C.. Spherical analysis on harmonic AN groups. Ann. Scuola Norm. Super. Pisa. Cl. Sci., 1996, 23: 643-679

[2]

Chen J. C., Wang S. L.. On boundedness of Hardy-Littlewood maximal function operator on Riemannian manifolds, Chin. Ann. Math.. Ser. B, 1993, 14: 69-76

[3]

Clerc J. L., Stein E. M.. Lp-multipliers for noncompact symmetric spaces. Proc. Nat. Acad. Sci. USA, 1974, 71: 3911-3912

[4]

Coifman R., Weiss G.. Analyse harmonique non commutative sur certains espaces homogènes. Lecture Notes in Mathematics, 1971, Berlin: Springer-Verlag

[5]

Li H. Q.. Analyse sur les variétés cuspidales. Math. Ann., 2003, 326: 625-647

[6]

Li H. Q.. La fonction maximale de Hardy-Littlewood sur une classe d’espaces métriques mesurables. C. R. Math. Acad. Sci. Paris, 2004, 338(1): 31-34

[7]

Li H. Q.. La fonction maximale non centre sur les variétés de type cuspidale. J. Funct. Anal., 2005, 229: 155-183

[8]

Li H. Q.. Les fonctions maximales de Hardy-Littlewood pour des mesures sur les variétés cuspidales. J. Math. Pures Appl., 2007, 88: 261-275

[9]

Lohoué N.. Fonction maximale sur les variétés de Cartan-Hadamard. C. R. Math. Acad. Sci. Paris, 1985, 300: 213-216

[10]

Lohoué N.. Estimations de la fonction maximale de Hardy-Littlewood. Bull. Soc. Math. France, 2007, 135(1): 135-169

[11]

Ionescu A. D.. A maximal operator and a covering lemma on non-compact symmetric spaces. Math. Res. Lett., 2000, 7: 83-93

[12]

Ionescu A. D.. An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators. Ann. of Math., 2000, 152: 259-275

[13]

Lohoué N.. Minoration du volume des grosses boules sur les groupes de Lie semi-simples. J. Anal. Math., 2005, 95: 133-145

[14]

Strömberg J. O.. Weak type L1 estimates for maximal functions on non-compact symmetric spaces. Ann. of Math., 1981, 114: 115-126

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/