The (**)-Haagerup property for C*-algebras

Changjing Li , Xiaochun Fang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 367 -372.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 367 -372. DOI: 10.1007/s11401-016-0958-4
Article

The (**)-Haagerup property for C*-algebras

Author information +
History +
PDF

Abstract

Extending the notion of Haagerup property for finite von Neumann algebras to the general von Neumann algebras, the authors define and study the (**)-Haagerup property for C*-algebras in this paper. They first give an answer to Suzuki’s question (2013), and then obtain several results of (**)-Haagerup property parallel to those of Haagerup property for C*-algebras. It is proved that a nuclear unital C*-algebra with a faithful tracial state always has the (**)-Haagerup property. Some heredity results concerning the (**)-Haagerup property are also proved.

Keywords

C*-algebras / Von Neumann algebras / Haagerup property

Cite this article

Download citation ▾
Changjing Li, Xiaochun Fang. The (**)-Haagerup property for C*-algebras. Chinese Annals of Mathematics, Series B, 2016, 37(3): 367-372 DOI:10.1007/s11401-016-0958-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blackadar B.. Operator Algebras: Theory of C*-Algebras and von Neumann Algebras, 2006, New York: Springer-Verlag

[2]

Brown, N. P. and Ozawa, N., C*-Algebras and Finite Dimensional Approximation, Grad. Stud. Math., Vol. 88, Amer. Math. Sci., Provindence, RI, 2008.

[3]

Cherix, P. A., Cowling, M., Jolissaint, P., et al., The Haagerup Property for Groups, Gromov’s a-TMenability, Progr. Math., Vol. 197, Birkhauser, Basel, 2001.

[4]

Choda M.. Group factors of the Haagerup type. Proc. Japan Acad., 1983, 59: 174-209

[5]

Connes A., Jonnes V.. Property T for von Neumann algebras. Bull. Lond. Math. Soc., 1985, 17: 57-62

[6]

Dong Z.. Haagerup property for C*-algebra. J. Math. Anal. Appl., 2011, 377: 631-644

[7]

Gromov, M., Asymptotic invariants of infinite groups, Geometic Group Theory, Vol. 2, G. A. Niblo and M. A. Roller (eds.), London Math. Soc. Lecture Notes, Vol. 182, Cambridge Univ. Press, Cambridge, 1993.

[8]

Haagerup U.. An example of nonnuclear C*-algebra which has the metric approximation property. Invent. Math., 1979, 50: 279-293

[9]

Jolissaint P.. Haagerup approximation property for finite von Neumann algebra. J. Operator Theory, 2002, 48: 549-571

[10]

Pedersen G.. C*-Algebras and Their Automorphism Groups, 1979, London: Academic Press 59-84

[11]

Popa S.. On a class of type II1 factors with Betti numbers invariants. Ann. of Math., 2006, 163: 809-899

[12]

Ricard Xu Q.. Khintchine type inequalities for reduced free products and applications. J. Reine Angew. Math., 2006, 599: 27-59

[13]

Suzuki Y.. Haagerup property for C*-algebra and rigidity of C*-algebra with property (T). J. Funct. Anal., 2013, 265: 1778-1799

[14]

Takesaki M.. Theory of Operator Algebras I, 1979, New York: Springer-Verlag 120-130

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/