Fixed point theorems for (p, q)-quasi-contraction mappings in cone metric spaces

Wajdi Chaker , Abdelaziz Ghribi , Aref Jeribi , Bilel Krichen

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 211 -220.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 211 -220. DOI: 10.1007/s11401-016-0957-5
Article

Fixed point theorems for (p, q)-quasi-contraction mappings in cone metric spaces

Author information +
History +
PDF

Abstract

In this work, the authors introduce the concept of (p, q)-quasi-contraction mapping in a cone metric space. We prove the existence and uniqueness of a fixed point for a (p, q)-quasi-contraction mapping in a complete cone metric space. The results of this paper generalize and unify further fixed point theorems for quasi-contraction, convex contraction mappings and two-sided convex contraction of order 2.

Keywords

Fixed points / (p, q)-Quasi-contractions / Cone metric space

Cite this article

Download citation ▾
Wajdi Chaker, Abdelaziz Ghribi, Aref Jeribi, Bilel Krichen. Fixed point theorems for (p, q)-quasi-contraction mappings in cone metric spaces. Chinese Annals of Mathematics, Series B, 2016, 37(2): 211-220 DOI:10.1007/s11401-016-0957-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alghamdi M. A., Alnafei S. H., Radenović S., Shahzad N.. Fixed point theorems for convex contraction mappings on cone metric spaces. Math. Comput. Modelling, 2011, 54: 2020-2026

[2]

Banach S.. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math., 1922, 3: 133-181

[3]

Chatterjee S. K.. Fixed point theorems. Rend. Acad. Bulgare Sc., 1972, 25: 727-730

[4]

Ćirić Lj. B.. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc., 1974, 45: 267-273

[5]

Fisher B.. Quasicontractions on metric spaces. Proc. Amer. Math. Soc., 1979, 75: 321-325

[6]

Huang L. G., Zhang X.. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 2007, 332: 1468-1476

[7]

Ilić D., Rakocević V.. Quasi-contraction on a cone metric space. Appl. Math. Lett., 2009, 22: 728-731

[8]

Istratescu V. I.. Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl., 1982, 130: 89-104

[9]

Jeong G. S., Rhoades B. E.. Maps for which F(T) = F(T n), fixed point theory and applications, 2007 71-105

[10]

Jeong G. S., Rhoades B. E.. More maps for which F(T) = F(T n). Demonstratio Math., 2007, 40: 671-680

[11]

Jeribi A., Krichen B.. Nonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications, Monographs and Research Notes in Mathematics, 2015

[12]

Kadelburg Z., Pavlović M., Radenović S.. Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces. Comput. Math. Appl., 2010, 59: 3148-3159

[13]

Kadelburg Z., Radenović S., Rakocević V.. Remarks on “quasi-contraction on a cone metric space”. Appl. Math. Lett., 2009, 22: 1674-1679

[14]

Kannan R.. Some results on fixed points. Bull. Calcutta Math. Soc., 1968, 60: 71-76

[15]

Pathak H. K., Shahzad N.. Fixed point results for generalized quasicontraction mappings in abstract metric spaces. Nonlinear Anal., 2009, 71: 6068-6076

[16]

Reich S.. Kannan’s fixed point theorem. Boll. Un. Mat. Ital., 1971, 4: 1-11

[17]

Rezapour Sh., Haghi R. H., Shahzad N.. Some notes on fixed points of quasi-contraction maps. Appl. Math. Lett., 2010, 23: 498-502

[18]

Rezapour Sh., Hamlbarani R.. Some notes on the paper: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 2008, 345: 719-724

[19]

Rhoades B. E.. Some maps for which periodic and fixed points coincide. Fixed Point Theory, 2003, 4: 173-176

[20]

Zamfirescu T.. Fix point theorems in metric spaces. Arch. Math. (Basel), 1972, 23: 292-298

[21]

Zhang X.. Fixed point theorem of generalized quasi-contractive mapping in cone metric space. Comput. Math. Appl., 2011, 62: 1627-1633

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/