Order bounded weighted composition operators mapping into the dirichlet type spaces

Yongxin Gao , Sanjay Kumar , Zehua Zhou

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 585 -594.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 585 -594. DOI: 10.1007/s11401-016-0956-6
Article

Order bounded weighted composition operators mapping into the dirichlet type spaces

Author information +
History +
PDF

Abstract

The authors characterize the order boundedness of weighted composition operators acting between Dirichlet type spaces.

Keywords

Weighted composition operator / Order boundedness / Dirichlet type spaces / Positive Borel measure

Cite this article

Download citation ▾
Yongxin Gao, Sanjay Kumar, Zehua Zhou. Order bounded weighted composition operators mapping into the dirichlet type spaces. Chinese Annals of Mathematics, Series B, 2016, 37(4): 585-594 DOI:10.1007/s11401-016-0956-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng Y., Kumar S., Zhou Z. H.. Weighted composition operators on Dirichlet-type spaces and related Qp spaces. Publ. Math. Debrecen, 2012, 80: 79-88

[2]

Contreras M. D., Hernández-Díaz A. G.. Weighted composition operators on Hardy spaces. J. Math. Anal. Appl., 2001, 263: 224-233

[3]

Čučkovič Zhao R.. Weighted composition operators on the Bergman spaces. J. London Math. Soc., 2004, 70: 499-511

[4]

Domenig T.. Order bounded and p-summing composition operators. Contemp. Math., 1998, 213: 27-41

[5]

Flett T. M.. The dual of an inequality of Hardy and Littlewood and some related inequalities. J. Math. Anal. Appl., 1972, 38: 756-765

[6]

Girela D., Peláez J. A.. Carleson measures, multipliers and integration operators for spaces of Dirichlet type. J. Funct. Anal., 2006, 214: 334-358

[7]

Girela D., Peláez J. A.. Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type. J. Aust. Math. Soc., 2006, 80: 397-418

[8]

Hedenmalm, H., Korenblum, B. and Zhu, K., Theory of Bergman Spaces, Springer-Verlag, New York, 2000.

[9]

Hibschweiler R. A.. Order bounded weighted composition operators. Contemp. Math., 2008, 454: 93-105

[10]

Hunziker, H., Kompositions operatoren auf klassichen Hardyraumen, Universitat Zurich, 1989.

[11]

Hunziker H., Jarchow H.. Composition operators which improve integrability. Math. Nachr., 1991, 152: 83-99

[12]

Kumar S.. Weighted composition operators between spaces of Dirichlet type. Rev. Mat. Complut., 2009, 22: 469-488

[13]

Littlewood J. E., Paley R. E. A. C.. Theorems on Fourier series and power series II. Proc. London Math. Soc., 1936, 42: 52-89

[14]

Luecking D. H.. Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinburgh Math. Soc., 1986, 29: 125-131

[15]

Rochberg R., Wu Z.. Toeplitz operators on Dirichlet spaces. Integr. Equ. Oper. Theory, 1992, 15: 57-75

[16]

Smith W.. Brennan’s conjecture for weighted composition operators, Recent Advances in Operator-Related Function theory, Centemp. Math.. Amer. Math. Soc., 2005, 393: 201-214

[17]

Song X. J., Zhou Z. H.. Differences of weighted composition operators from Bloch space to H8 on the unit ball. J. Math. Anal. Appl., 2013, 401: 447-457

[18]

Ueki S.. Order bounded weighted composition operators mapping into the Bergman space. Complex Anal. Oper. Theory, 2012, 6: 549-560

[19]

Wu Z.. Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal., 1999, 169: 148-163

[20]

Zhang L., Zhou Z. H.. Hypercyclicity of weighted composition operator on weighted Dirichlet space. Complex Var. Elliptic Equ., 2014, 59: 1043-1051

[21]

Zhou Z. H., Chen R. Y.. Weighted composition operator from F(p, q, s) space to the Bloch type spaces on the unit ball. Internat. J. Math., 2008, 19: 899-926

[22]

Zhou Z. H., Liang Y. X., Zeng H. G.. Essential norms of weighted composition operators from weighted Bergman space to mixed-norm space on the unit ball. Acta Math. Sin. (Engl. Ser.), 2013, 29: 547-556

[23]

Zygmund A.. On certain integrals. Trans. Am. Math. Soc., 1944, 55: 170-204

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/