Gröbner-Shirshov bases of irreducible modules of the quantum group of type G 2

Ghani Usta , Abdukadir Obul

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 427 -440.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 427 -440. DOI: 10.1007/s11401-016-0954-8
Article

Gröbner-Shirshov bases of irreducible modules of the quantum group of type G 2

Author information +
History +
PDF

Abstract

First, the authors give a Gröbner-Shirshov basis of the finite-dimensional irreducible module V q(λ) of the Drinfeld-Jimbo quantum group U q(G 2) by using the double free module method and the known Gröbner-Shirshov basis of Uq(G2). Then, by specializing a suitable version of U q(G 2) at q = 1, they get a Gröbner-Shirshov basis of the universal enveloping algebra U(G 2) of the simple Lie algebra of type G 2 and the finite-dimensional irreducible U(G 2)-module V (λ).

Keywords

Quantum group / Gröbner-Shirshov basis / Double free module / Indecomposable module / Highest weight module

Cite this article

Download citation ▾
Ghani Usta, Abdukadir Obul. Gröbner-Shirshov bases of irreducible modules of the quantum group of type G 2. Chinese Annals of Mathematics, Series B, 2016, 37(3): 427-440 DOI:10.1007/s11401-016-0954-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergman G. M.. The diamond lemma for ring theory. Adv. Math., 1978, 29: 178-218

[2]

Bokut L. A.. Imbeddings into simple associative algebras. Algebra and Logic, 1976, 15: 117-142

[3]

Bokut L. A., Klein A. A.. Serre relations and Grobner-Shirshov bases for simple Lie algebras I. II, Internat. J. Algebra Comput., 1996, 6: 389-400

[4]

Bokut L. A., Klein A. A.. Gröbner-Shirshov bases for exceptional Lie algebras I. Journal of Pure and Applied Algebra, 1998, 133: 51-57

[5]

Bokut L. A., Malcolmson P.. Gröbner-Shirshov bases for quantum enveloping algebras. Israel Journal of Mathematics, 1996, 96: 97-113

[6]

Buchberger B.. An Algorithm for Finding a Basis for the Residue Class Ring of a Zero Dimensional Polynomial ideal, Ph. D. Thesis, 1965, Austria: University of Innsbruck

[7]

Chen Y. Q., Chen Y. S., Zhong C. Y.. Composition-diomond lemma for modules. Czechoslovak Math. J., 2010, 60: 59-76

[8]

Chibrikov E. S.. On free Lie conformal algebras. Vestnik Novosibirsk State University, 2004, 4(1): 65-83

[9]

Drinfel’d V. G.. Hopf algebras and the quantum Yang-Baxter equation. Doklady Akademii Nauk SSSR, 1985, 283(5): 1060-1064

[10]

Jantzen, J. C., Lectures on Quantum Groups, Graduate Studies in Mathematics, Vol. 6, Amer. Math. Soc., Providence, 1996.

[11]

Jimbo M.. A q-difference analogue of U(G) and the Yang-Baxter equation. Letters in Mathematical Physics, 1985, 10(1): 63-69

[12]

Kang S. J., Lee K.-H.. Gröbner-Shirshov basis for representation theory. J. Korean Math. Soc., 2000, 37(1): 55-72

[13]

Kang S. J., Lee K.-H.. Gröbner-Shirshov bases for irreducible sn+1-modules. J. Algebra, 2000, 232: 1-20

[14]

Obul A., Yunus G.. Gröbner-Shirshov basis of quantum group of type E6. J. Algebra, 2011, 346: 248-265

[15]

Qiang C. X., Obul A.. Gröbner-Shirshov basis of quantum group of type F4. Frontiers of Mathematics in China, 2014, 9(1): 135-150

[16]

Ren Y. H., Obul A.. Gröbner-Shirshov basis of quantum group of type G2. Comm. Algebra, 2011, 39(5): 1510-1518

[17]

Ringel C. M.. PBW-bases of quantum groups. J. Reine Angew. Math., 1996, 470: 51-88

[18]

Shirshov A. I.. Some algorithmic problems for Lie algebras. Siberian Math. J., 1962, 3: 292-296

[19]

Yunus G., Obul A.. Gröbner-Shirshov basis of quantum group of type D4. Chin. Ann. Math. Ser. B, 2011, 32(4): 581-592

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/