On the existence for some special primitive elements in finite fields

Qunying Liao , Jiyou Li , Keli Pu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 259 -266.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 259 -266. DOI: 10.1007/s11401-016-0949-5
Article

On the existence for some special primitive elements in finite fields

Author information +
History +
PDF

Abstract

Let F q be a finite field of characteristic p. In this paper, by using the index sum method the authors obtain a sufficient condition for the existence of a primitive element $\alpha \in {F_{{q^n}}}$ such that α + α −1 is also primitive or α + α −1 is primitive and α is a normal element of ${F_{{q^n}}}$ over F q.

Keywords

Finite field / Primitive element / Normal basis

Cite this article

Download citation ▾
Qunying Liao, Jiyou Li, Keli Pu. On the existence for some special primitive elements in finite fields. Chinese Annals of Mathematics, Series B, 2016, 37(2): 259-266 DOI:10.1007/s11401-016-0949-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carlitz L.. Primitive roots in finite fields. Trans. Am. Math. Soc., 1952, 73: 373-382

[2]

Carlitz L.. Some problems involving primitive roots in a finite field. Proc. Nat. Acad. Sci. U. S. A., 1952, 38: 314-318

[3]

Chou W. S., Cohen S. D.. Primitive elements with zero traces. Finite Fields Appl., 2001, 7: 125-141

[4]

Cohen, S. D., Primitive elements and polynomials: Existence results, Lecture Notes in Pure and Appl., http:// wwwresearchgatenet/publication/265461791

[5]

Cohen S. D.. Primitive roots in the quadratic extension of a finite field. J. London Math Soc., 1983, 27(2): 221-228

[6]

Cohen S. D.. Primitive elements and polynomials with arbitrary trace. Discrete Math., 1990, 83: 1-7

[7]

Cohen S. D., Hachenberger D.. Primitive normal bases with prescribed trace. Applicable Algebra in Engineering Communication and Computing, 1999, 9: 383-403

[8]

Cohen S. D., Huczynska S.. Primitive free quartics with specified norm and trace. Acta Arith., 2003, 109(4): 359-385

[9]

Dahab R., Hankerson D., Hu F. Software multiplication using Gaussian normal bases. IEEE Trans. Comput., 2006, 55: 974-984

[10]

Davenport H.. Bases for finite fields. J. London Math. Soc., 1968, 43: 21-39

[11]

Fan S. Q., Han W. B., Feng K. Q., Zhang X. Y.. Primitive normal polynomials with the first two coefficients prescribed: A revised p-adic method. Finite Fields Appl., 2007, 13(3): 577-604

[12]

Fan S. Q., Han W. B., Feng K. Q.. Primitive normal polynomials with multiple coefficients prescribed: An asymptotic result. Finite Fields Appl., 2007, 13(4): 1029-1044

[13]

Fan S. Q.. Primitive normal polynomials with the last half coefficients prescribed. Finite Fields Appl., 2009, 15(5): 604-614

[14]

He L. B., Han W. B.. Research on primitive elements in the form a + a-1 over Fq. Journal of Information Engineering University, 2003, 4(2): 97-98

[15]

Lenstra H. W., Schoof R. J.. Primitive normal bases for finite fields. Math. Comp., 1987, 48: 271-231

[16]

Lidl R., Niederreiter H.. Finite Fields, 1987, Cambridge: Cambridge University Press

[17]

Lidl R., Niederreiter H.. Finite Fields and Their Applications, 1994, Cambrige: Cambrige University Press

[18]

Morgan I. H., Mullen L. G.. Primitive normal polynomials over finite fields. Math. Comp., 1994, 63: 759-765

[19]

Qi W. F., Tian T.. Primitive normal element and its inverse in finite fields. Acta Mathematics Sinica (Chinese Series), 2006, 49(3): 657-668

[20]

Wan D. Q.. Generators and irreducible polynomials over finite fields. Mathematics of Computation, 1997, 66: 1195-1212

[21]

Wang P. P., Cao X. W., Feng R. Q.. On the existence of some specific elements in finite fields of characteristic 2. Finite Fields Appl., 2012, 18(4): 800-813

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/