Abstract elliptic equations with integral boundary conditons

Veli Shakhmurov

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 625 -642.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (4) : 625 -642. DOI: 10.1007/s11401-016-0948-6
Article

Abstract elliptic equations with integral boundary conditons

Author information +
History +
PDF

Abstract

This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L p spaces. These results are applied to the Cauchy problem for abstract parabolic equations, its infinite systems and boundary value problems for anisotropic partial differential equations in mixed L p norm

Keywords

Boundary value problems / Integral boundary conditions / Differential-operator equations / Maximal L p regularity / Abstract parabolic equation / Operator valued multipliers / Interpolation of Banach spaces / Semigroups of operators

Cite this article

Download citation ▾
Veli Shakhmurov. Abstract elliptic equations with integral boundary conditons. Chinese Annals of Mathematics, Series B, 2016, 37(4): 625-642 DOI:10.1007/s11401-016-0948-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed B., Alsaedi A., Alghamidi B.. Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions. Nonlinear Anal. Real World Appl., 2008, 9: 1727-1740

[2]

Amann H.. Linear and Quasi-linear Equations, 1995

[3]

Ashyralyev A.. On well-posedness of the nonlocal boundary value problem for elliptic equations. Numerical Functional Analysis & Optimization, 2003, 24(1–2): 1-15

[4]

Besov O. V., Ilin V. P., Nikolskii S. M.. Integral Representations of Functions and Embedding Theorems, 1975, Moscow: Nauka

[5]

Burkholder D. L.. A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions. Proc. Conf. Harmonic analysis in honor of Antonu Zigmund, Chicago, 1983 270-286

[6]

Cannon J. R., Perez Esteva S., van Der Hoek J.. A Galerkin procedure for the diffusion equation subject to the specification of mass. SIAM J. Numer. Anal., 1987, 24: 499-515

[7]

Choi Y. S., Chan K. Y.. A parabolic equation with nonlocal boundary conditions arising from electrochemistry. Nonlinear Anal., 1992, 18: 317-331

[8]

Denk R., Hieber M., Prüss J.. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 2003, 166: 788

[9]

Dore C., Yakubov S.. Semigroup estimates and non-coercive boundary value problems. Semigroup Forum., 2000, 60: 93-121

[10]

Ewing R. E., Lin T.. A class of parameter estimation techniques for fluid flow in porous media. Adv. Water Resour., 1991, 14: 89-97

[11]

Favini A., Shakhmurov V., Yakubov Y.. Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces. Semigroup Forum., 2009, 79(1): 22-54

[12]

Goldstain J. A.. Semigroups of Linear Operators and Applications, 1985, Oxfard: Oxfard University Press

[13]

Haller R., Heck H., Noll A.. Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 2002, 244: 110-130

[14]

Krein S. G.. Linear Differential Equations in Banach Space, 1971, Providence: American Mathematical Society

[15]

Liang J., Nagel R., Xiao T. J.. Approximation theorems for the propagators of higher order abstract Cauchy problems. Trans. Amer. Math. Soc., 2008, 360(4): 1723-1739

[16]

Lions J. L., Magenes E.. Nonhomogenous Boundary Value Problems, 1971, Moscow: Mir

[17]

Shahmurov R.. Solution of the Dirichlet and Neumann problems for a modified Helmholtz equation in Besov spaces on an annuals. Journal of Differential Equations, 2010, 249(3): 526-550

[18]

Shakhmurov V. B.. Imbedding theorems and their applications to degenerate equations. Differential Equations, 1988, 24(4): 475-482

[19]

Shakhmurov V. B.. Coercive boundary value problems for regular degenerate differential-operator equations. J. Math. Anal. Appl., 2004, 292(2): 605-620

[20]

Shakhmurov V. B.. Embedding theorems and maximal regular differential operator equations in Banachvalued function spaces. Journal of Inequalities and Applications, 2005, 2(4): 329-345

[21]

Shakhmurov V. B.. Embedding and maximal regular differential operators in Banach-valued weighted spaces. Acta Mathematica Sinica, 2006, 22(5): 1493-1508

[22]

Shakhmurov V. B.. Linear and nonlinear abstract equations with parameters, Nonlinear Analysis. Method and Applications, 2010, 73: 2383-2397

[23]

Shi P., Shillor M.. Design of contact patterns in one-dimensional thermoelasticity, Theoretical Aspects of Industrial Design, 1992, Philadelphia, PA: SIAM

[24]

Shklyar A. Y.. Complete Second Order Linear Differential Equations in Hilbert Spaces, 1997, Basel: Birkhauser Verlak

[25]

Sobolevskii P. E.. Coerciveness inequalities for abstract parabolic equations. Doklady Akademii Nauk SSSR, 1964, 57(1): 27-40

[26]

Triebel H.. Interpolation Theory, Function Spaces, Differential Operators, 1978, Amsterdam: North-Holland

[27]

Weis L.. Operator-valued Fourier multiplier theorems and maximal Lp regularity. Math. Ann., 2001, 319: 735-758

[28]

Xiao T. J., Liang J.. Second order differential operators with Feller-Wentzell type boundary conditions. J. Funct. Anal., 2008, 254: 1467-1486

[29]

Xiao T. J., Liang J.. Nonautonomous semilinear second order evolution equations with generalized Wentzell boundary conditions. J. Differential Equations, 2012, 252: 3953-3971

[30]

Yakubov S.. Completeness of Root Functions of Regular Differential Operators, Longman, 1994, New York: Scientific and Technical

[31]

Yakubov S.. A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integr. Equ. Oper. Theory, 1999, 35: 485-506

[32]

Yakubov S., Yakubov Y.. Differential-operator Equations, Ordinary and Partial Differential Equations, 2000, Boca Raton: Chapman and Hall /CRC

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/