Initial boundary value problem of an equation from mathematical finance

Huashui Zhan

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 465 -482.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 465 -482. DOI: 10.1007/s11401-016-0947-7
Article

Initial boundary value problem of an equation from mathematical finance

Author information +
History +
PDF

Abstract

Consider the initial boundary value problem of the strong degenerate parabolic equation $\begin{array}{*{20}c} {\partial _{xx} u + u\partial _y u - \partial _t u = f(x,y,t,u),} & {(x,y,t) \in Q_T = \Omega \times (0,T)} \\ \end{array}$ with a homogeneous boundary condition. By introducing a new kind of entropy solution, according to Oleinik rules, the partial boundary condition is given to assure the well-posedness of the problem. By the parabolic regularization method, the uniform estimate of the gradient is obtained, and by using Kolmogoroff’s theorem, the solvability of the equation is obtained in BV (Q T) sense. The stability of the solutions is obtained by Kruzkov’s double variables method.

Keywords

Mathematical finance / Oleinik rules / Partial boundary condition / Entropy solution / Kruzkov’s double variables method

Cite this article

Download citation ▾
Huashui Zhan. Initial boundary value problem of an equation from mathematical finance. Chinese Annals of Mathematics, Series B, 2016, 37(3): 465-482 DOI:10.1007/s11401-016-0947-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antonelli F., Barucci E., Mancino M. E.. A comparison result for FBSDE with applications to decisions theory. Math. Meth. Oper. Res., 2001, 54: 407-423

[2]

Escobedo M., Vazquez J. L., Zuazua E. E.. ntropy solutions for diffusion-convection equations with partial diffusivity. Trans. Amer. Math. Soc., 1994, 343: 829-842

[3]

Crandall M. G., Ishii H., Lions P. L.. User’s guide to viscosity solutions of second partial differential equations. Bull. Amer. Math. Soc. (N.S.), 1992, 27: 1-67

[4]

Antonelli F., Pascucci A.. On the viscosity solutions of a stochastic differential utility problem. J. Diff. Equ., 2002, 186: 69-87

[5]

Citti G., Pascucci A., Polidoro S.. Regularity properties of viscosity solutions of a non-Hormander degenerate equation. J. Math. Pures Appl., 2001, 80(9): 901-918

[6]

Zhan H. S.. The study of the Cauchy problem of a second order quasilinear degenerate parabolic equation and the parallelism of a Riemannian manifold, Doctor Thesis, 2004

[7]

Zhan H. S., Zhao J. N.. The stability of solutions for second quasilinear degenerate parabolic equation. Acta Math. Sinica, Chinese Ser., 2007, 50: 615-628

[8]

Chen G. Q., Perthame B.. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. I. H. Poincare-AN, 2003, 20: 645-668

[9]

Chen G. Q., Dibendetto E.. Stability of entropy solutions to Cauchy problem for a class of nonlinear hyperbolic-parabolic equations. SIAM J. Math. Anal., 2001, 33: 751-762

[10]

Karlsen K. H., Risebro N. H.. On the uniqueness of entropy solutions of nonlinear degenerate parabolic equations with rough coefficient. Discrete Contain. Dye. Sys., 2003, 9: 1081-1104

[11]

Bendahamane M., Karlsen K. H.. Reharmonized entropy solutions for quasilinear anisotropic degenerate parabolic equations. SIAM J. Math. Anal., 2004, 36: 405-422

[12]

Carrillo J.. Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal., 1999, 147: 269-361

[13]

Zhan H. S.. The solution of the Cauchy problem for a quasilinear degenerate parabolic equation (in Chinese). Chin. Ann. Math. Ser. A, 2012, 33(4): 449-460

[14]

Oleinik O. A.. A problem of Fichera. Dokl. Akad. Nauk SSSR, 1964, 154: 1297-1300

[15]

Oleinik O. A.. Linear equations of second order with nonnegative characteristic form. Math. Sb., 1966, 69: 111-140

[16]

Oleinik O. A., Samokhin V. N.. Mathematical Models in Boundary Layer Theorem, 1999, Boca Raton, London, New York, Washington: Chapman and Hall/CRC

[17]

Zhan H. S.. On a quasilinear degenerate parabolic equation (in Chinese). Chin. Ann. Math. Ser. A, 2006, 27(6): 731-740

[18]

Wu Z., Zhao J.. The first boundary value problem for quasilinear degenerate parabolic equations of second order in several variables. Chin. Ann. Math. Ser. B, 1983, 4: 319-358

[19]

Kružkov S. N.. First order quasilinear equations in several independent variables. Math. USSR-Sb., 1970, 10: 217-243

[20]

Vol’pert A. I., Hudjaev S. I.. On the problem for quasilinear degenerate parabolic equations of second order (in Russian). Mat. Sb., 1967, 3: 374-396

[21]

Wu Z., Zhao J., Yin J., Li H.. Nonlinear Diffusion Equations, 2001, Singapore: World Scientific Publishing

[22]

Zhan H. S.. Harnack estimates for weak solutions to a singular parabolic equation. Chin. Ann. Math. Ser. B, 2011, 32(3): 397-416

[23]

Volpert A. I., Hudjave S. I.. Analysis of Class of Discontinuous Functions and the Equations of Mathematical Physics, Izda, 1975, Moscow: Nauka Moskwa, Martinus Nijhoff Publishers

[24]

Volpert A. I.. BV space and quasilinear equations. Mat. Sb., 1967, 73: 255-302

[25]

Kobayasi K., Ohwa H.. Homogeneous Dirichlet problems for quasilinear anisotropic degenerate parabolic-hyperbolic equations. J. Diff. Equ., 2012, 252: 4719-4741

[26]

Lions P. L., Perthame B., Tadmor E.. A kinetic formulation of multidimensional conservation laws and related equations. J. Amer. Math. Soc., 1994, 7: 169-191

[27]

Li Y., Wang Q.. Uniqueness and existence for anisotropic degenerate parabolic equations with boundary conditions on a bounded rectangle. J. Diff. Equ., 2012, 252: 137-167

[28]

Evans L. C.. Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics, 1998 74

[29]

Gu L. K.. Second Order Parabolic Partial Differential Equations, 2002, Xiamen: The Publishing Company of Xiamen University

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/