On the number of limit cycles in small perturbations of a piecewise linear Hamiltonian system with a heteroclinic loop

Feng Liang , Maoan Han

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 267 -280.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 267 -280. DOI: 10.1007/s11401-016-0946-8
Article

On the number of limit cycles in small perturbations of a piecewise linear Hamiltonian system with a heteroclinic loop

Author information +
History +
PDF

Abstract

In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic loop around the origin. When the degree of perturbing polynomial terms is n (n ≥ 1), it is obtained that n limit cycles can appear near the origin and the heteroclinic loop respectively by using the first Melnikov function of piecewise near-Hamiltonian systems, and that there are at most n + [n+1/2] limit cycles bifurcating from the periodic annulus between the center and the heteroclinic loop up to the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number of zeros of the first Melnikov function is derived.

Keywords

Limit cycle / Heteroclinic loop / Melnikov function / Chebyshev system / Bifurcation / Piecewise smooth system

Cite this article

Download citation ▾
Feng Liang, Maoan Han. On the number of limit cycles in small perturbations of a piecewise linear Hamiltonian system with a heteroclinic loop. Chinese Annals of Mathematics, Series B, 2016, 37(2): 267-280 DOI:10.1007/s11401-016-0946-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

di Bernardo M., Budd C. J., Champneys A. R., Kowalczyk P.. Piecewise-Smooth Dynamical Systems, Theory and Applications, 2008, London: Springer-Verlag

[2]

Andronov A. A., Khaikin S. E., Vitt A. A.. Theory of Oscillators, 1965, Oxford: Pergamon Press

[3]

Kunze M.. Non-smooth Dynamical Systems, 2000, Berlin: Springer-Verlag

[4]

Filippov A. F.. Differential Equations with Discontinuous Righthand Sides, 1988, Netherlands: Kluwer Academic

[5]

Bernardo M. D., Budd C. J., Champneys A. R.. Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the DC/DC buck converter. Nonlinearity, 1998, 11: 859-890

[6]

Budd C. J.. Non-smooth dynamical systems and the grazing bifurcation, Nonlinear Mathematics and Its Applications, 1996, Cambridge: Cambridge Univ. Press

[7]

Bernardo M. D., Kowalczyk P., Nordmark A. B.. Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13(10): 2935-2948

[8]

Nusse H. E., Yorke J. A.. Border-collision bifurcations including “period two to period three” for piecewise smooth systems. Physica D, 1992, 57(1–2): 39-57

[9]

Han M., Zhang W.. On Hopf bifurcation in nonsmooth planar systems. J. Differential Equations, 2010, 248: 2399-2416

[10]

Coll B., Gasull A., Prohens R.. Degenerate Hopf bifurcations in discontinuous planar systems. J. Math. Anal. Appl., 2001, 253(2): 671-690

[11]

Gasull A., Torregrosa J.. Center-focus problem for discontinuous planar differential equations. Int. J. Bifur. Chaos, 2003, 13(7): 1755-1765

[12]

Chen X., Du Z.. Limit cycles bifurcate from centers of discontinuous quadratic systems. Comput. Math. Appl., 2010, 59(12): 3836-3848

[13]

Liu X., Han M.. Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20(5): 1-12

[14]

Liang, F., Han, M. and Romanovski, V. G., Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Analysis, 75(11), 2012, 4355–4374.

[15]

Karlin S., Studden W.. Tchebycheff Systems: With Applications in Analysis and Statistics, 1966, New York: Interscience Publishers

[16]

Du Z., Zhang W.. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl., 2005, 50(3–4): 445-458

[17]

Battelli F., Feckan M.. Bifurcation and chaos near sliding homoclinics. J. Differential Equations, 2010, 248(9): 2227-2262

[18]

Llibre J., Makhlonf A.. Bifurcation of limit cycles from a two-dimensional center inside Rn. Nonlinear Analysis, 2010, 72(3–4): 1387-1392

[19]

Llibre J., Wu H., Yu J.. Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system. Nonlinear Analysis, 2009, 70(1): 419-432

[20]

Han M.. On Hopf cyclicity of planar systems. J. Math. Anal. Appl., 2000, 245(2): 404-422

[21]

Han M., Chen G., Sun C.. On the number of limit cycles in near-Hamiltonian polynomial systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2007, 17(6): 2033-2047

[22]

Wu Y., Cao Y., Han M.. Bifurcations of limit cycles in a z3-equivariant quartic planar vector field. Chaos, Solitons & Fractals, 2008, 38(4): 1177-1186

[23]

Yang J., Han M.. Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop. Chaos, Solitons & Fractals, 2011, 44(4–5): 269-289

[24]

Han M., Chen J.. On the number of limit cycles in double homoclinic bifurcations. Sci. China, Ser. A, 2000, 43(9): 914-928

[25]

Han M.. Cyclicity of planar homoclinic loops and quadratic integrable systems. Sci. China, Ser. A, 1997, 40(12): 1247-1258

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/