Witten’s D 4 integrable hierarchies conjecture

Huijun Fan , Amanda Francis , Tyler Jarvis , Evan Merrell , Yongbin Ruan

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 175 -192.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 175 -192. DOI: 10.1007/s11401-016-0944-x
Article

Witten’s D 4 integrable hierarchies conjecture

Author information +
History +
PDF

Abstract

The authors prove that the total descendant potential functions of the theory of Fan-Jarvis-Ruan-Witten for D 4 with symmetry group 〈J〉 and for D 4 T with symmetry group G max, respectively, are both tau-functions of the D 4 Kac-Wakimoto/Drinfeld-Sokolov hierarchy. This completes the proof, begun in the article by Fan-Jarvis-Ruan (2013), of the Witten Integrable Hierarchies Conjecture for all simple (ADE) singularities.

Keywords

Quantum cohomology / Frobenius manifolds / Singularity theory / Integrable hierarchies

Cite this article

Download citation ▾
Huijun Fan, Amanda Francis, Tyler Jarvis, Evan Merrell, Yongbin Ruan. Witten’s D 4 integrable hierarchies conjecture. Chinese Annals of Mathematics, Series B, 2016, 37(2): 175-192 DOI:10.1007/s11401-016-0944-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arbarello E., Cornalba M.. Calculating cohomology groups of moduli spaces of curves via algebraic geometry. Publ. Math. IHES, 1998, 88: 97-127

[2]

Chiodo A.. Towards an enumerative geometry of the moduli space of twisted curves and r-th roots. Compositio Mathematica, 2008, 144(6): 1461-1496

[3]

Dijkgraaf R., Verlinde H., Verlinde E.. Topological strings in d < 1. Nuclear Phys. B, 1991, 352: 59-86

[4]

Drinfeld V., Sokolov V.. Lie algebra and equations of KDV type. Itogi Nauki Techniki, 1984, 24: 81-180

[5]

Faber C.. MgnF: Maple code for computing intersections of divisors in the stack of pointed stable curves, 2010

[6]

Faber C., Shadrin S., Zvonkine D.. Tautological relations and the r-spin Witten conjecture. Ann. Sci. éc. Norm. Supér., 2010, 43(4): 621-658

[7]

Fan H., Jarvis T., Ruan Y.. The Witten equation, mirror symmetry and quantum singularity theory. Annals of Mathematics, 2013, 178(1): 1-106

[8]

Frenkel E., Givental A., Milanov T.. Soliton equations, vertex operators, and simple singularities. Funct. Anal. Other Math., 2010, 3(1): 47-63

[9]

Givental A., Milanov T.. Simple singularities and integrable hierarchies, the breadth of symplectic and Poisson geometry, 2005, Boston: Birkhauser Boston 173-201

[10]

Jarvis T., Kimura T., Vaintrob A.. Moduli spaces of higher spin curves and integrable hierarchies. Compositio Math., 2001, 126: 157-212

[11]

Johnson D.. Top intersections on Mg,n. Sage code, 2015

[12]

Kabanov A., Kimura T.. Intersection numbers and rank one cohomological field theories in genus one. Comm. Math. Phys., 1998, 194(3): 651-674

[13]

Kac V., Wakimoto M.. Exceptional hierarchies of soliton equations, Part 1. Proc. Sym. Pure Math., 1989, 49: 191-237

[14]

Klemm A., Theisen S., Schmidt M.. Correlation functions for topological Landau-Ginzburg models with c = 3. Internat. J. Modern Phys. A, 1992, 7(25): 6215-6244

[15]

Stein W. A. Sage Mathematics Software (Version 5.3), 2012

[16]

Wall C. T. C.. A note on symmetry of singularities. Bull. London Math. Soc., 1980, 12(3): 169-175

[17]

Wall C. T. C.. A second note on symmetry of singularities. Bull. London Math. Soc., 1980, 12(5): 347-354

[18]

Witten, E., Private communication.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/