Adapted metrics and Webster curvature in Finslerian 2-dimensional geometry

Mircea Crasmareanu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 419 -426.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (3) : 419 -426. DOI: 10.1007/s11401-016-0940-1
Article

Adapted metrics and Webster curvature in Finslerian 2-dimensional geometry

Author information +
History +
PDF

Abstract

The Webster scalar curvature is computed for the sphere bundle T 1 S of a Finsler surface (S, F) subject to the Chern-Hamilton notion of adapted metrics. As an application, it is derived that in this setting (T 1 S, g Sasaki) is a Sasakian manifold homothetic with a generalized Berger sphere, and that a natural Cartan structure is arising from the horizontal 1-forms and the author associates a non-Einstein pseudo-Hermitian structure. Also, one studies when the Sasaki type metric of T 1 S is generally adapted to the natural co-frame provided by the Finsler structure.

Keywords

Webster curvature / Finsler geometry / Sasakian type metric on tangent bundle / Sphere bundle / Adapted metric / Cartan structure / Pseudo-Hermitian structure

Cite this article

Download citation ▾
Mircea Crasmareanu. Adapted metrics and Webster curvature in Finslerian 2-dimensional geometry. Chinese Annals of Mathematics, Series B, 2016, 37(3): 419-426 DOI:10.1007/s11401-016-0940-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anastasiei M.. A framed f-structure on tangent manifold of a Finsler space. An. Univ. Bucuresti Math. Inform, 2000, 49(2): 3-9

[2]

Bao D., Chern S.-S., Shen Z.. An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 2000, New York: Springer-Verlag 200

[3]

Blair D. E.. Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 2010, Boston, MA: Birkhäuser Boston, Inc. 203

[4]

Bryant R. L.. Finsler structures on the 2-sphere satisfying K = 1, in “Finsler Geometry” (Seattle, WA, 1995), 1996, Providence, RI: Amer. Math. Soc. 27-41

[5]

Chern S.-S., Hamilton R. S.. On Riemannian Metrics Adapted to Three-Dimensional Contact Manifolds, with an Appendix, by Alan Weinstein. Lecture Notes in Math., 1984, Berlin: Springer-Verlag 279-308

[6]

Crasmareanu M.. Adapted metrics and Webster curvature on three classes of 3-dimensional geometries. International Electronic Journal of Geometry, 2014, 7(2): 50-59

[7]

Feng H., Li M.. Adiabatic limit and connections in Finsler geometry. Comm. Anal. Geom., 2013, 21(3): 607-624

[8]

Geiges H., Gonzalo J.. Contact geometry and complex surfaces. Invent. Math., 1995, 121(1): 147-209

[9]

Guilfoyle B. S.. The local moduli of Sasakian 3-manifolds. Int. J. Math. Math. Sci., 2002, 32(2): 117-127

[10]

Leitner F.. On transversally symmetric pseudo-Einstein and Fefferman-Einstein spaces. Math. Z., 2007, 256(2): 443-459

[11]

Nicolaescu L. I.. Adiabatic limits of the Seiberg-Witten equations on Seifert manifolds. Comm. Anal. Geom., 1998, 6(2): 331-392

[12]

Petersen P.. Riemannian Geometry. Graduate Texts in Mathematics, 2006, New York: Springer-Verlag 171

[13]

Sabau S. V., Shibuya K., Shimada H.. Moving frames on generalized Finsler structures. J. Korean Math. Soc., 2012, 49(6): 1229-1257

[14]

Sabau S. V., Shibuya K., Pitis Gh.. Generalized Finsler structures on closed 3-manifolds. Tohoku Math. J., 2014, 66(3): 321-353

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/