A parameterization of the canonical bases of affine modified quantized enveloping algebras

Jie Xiao , Minghui Zhao

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 235 -258.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 235 -258. DOI: 10.1007/s11401-016-0937-9
Article

A parameterization of the canonical bases of affine modified quantized enveloping algebras

Author information +
History +
PDF

Abstract

For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra $\dot U$ and its canonical basis $\dot B$ given by Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of finite or affine type, the authors define a set $\tilde M$ which depends only on the root category R and prove that there is a bijection between $\tilde M$ and $\dot B$, where R is the T 2-orbit category of the bounded derived category of the corresponding Dynkin or tame quiver. The method in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type basis of U+.

Keywords

Ringel-Hall algebras / Root categories / Modified quantized enveloping algebras / Canonical bases

Cite this article

Download citation ▾
Jie Xiao, Minghui Zhao. A parameterization of the canonical bases of affine modified quantized enveloping algebras. Chinese Annals of Mathematics, Series B, 2016, 37(2): 235-258 DOI:10.1007/s11401-016-0937-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bridgeland T.. Quantum groups via Hall algebras of complexes. Ann. of Math., 2013, 177(2): 739-759

[2]

Chen X.. Root vectors of the composition algebra of the Kronecker algebra. Algebra Discrete Math., 2004, 1: 37-56

[3]

Cramer T.. Double Hall algebras and derived equivalences. Adv. Math., 2010, 224(3): 1097-1120

[4]

Deng B., Du J., Xiao J.. Generic extensions and canonical bases for cyclic quivers. Canad. J. Math., 2007, 59(5): 1260-1283

[5]

Green J. A.. Hall algebras, hereditary algebras and quantum groups. Invent. Math., 1995, 120(2): 361-377

[6]

Happel D.. On the derived category of a finite-dimensional algebra. Comment. Math. Helv., 1987, 62(3): 339-389

[7]

Happel D.. Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, 1988, Cambridge: Cambridge University Press

[8]

Kapranov M.. Heisenberg doubles and derived categories. J. Algebra, 1998, 202(2): 712-744

[9]

Kashiwara M.. Crystal bases of modified quantized enveloping algebra. Duke Math. J., 1994, 73(2): 383-413

[10]

Lin Z., Xiao J., Zhang G.. Representations of tame quivers and affine canonical bases. Publ. Res. Inst. Math. Sci., 2011, 47(4): 825-885

[11]

Lusztig G.. Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc., 1990, 3(2): 447-498

[12]

Lusztig G.. Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc., 1991, 4(2): 365-421

[13]

Lusztig G.. Canonical bases in tensor products. Proc. Natl. Acad. Sci. USA, 1992, 89(17): 8177-8179

[14]

Lusztig, G., Introduction to Quantum Groups, Birkhäuser, Boston, 1993.

[15]

Peng L., Xiao J.. Root categories and simple Lie algebras. J. Algebra, 1997, 198(1): 19-56

[16]

Peng L., Xiao J.. Triangulated categories and Kac-Moody algebras. Invent. Math., 2000, 140(3): 563-603

[17]

Reineke M.. The monoid of families of quiver representations. Proc. Lond. Math. Soc., 2002, 84(3): 663-685

[18]

Ringel C. M.. Hall algebras and quantum groups. Invent. Math., 1990, 101(3): 583-591

[19]

Ringel C. M.. The Hall algebra approach to quantum groups. Aportaciones Mat. Comun., 1995, 15: 85-114

[20]

Toen B.. Derived Hall algebras. Duke Math. J., 2006, 135(3): 587-615

[21]

Xiao J.. Hall algebra in a root category, Preprint 95-070, 1995

[22]

Xiao J., Xu F.. Hall algebras associated to triangulated categories. Duke Math. J., 2008, 143(2): 357-373

[23]

Zhang P.. PBW-basis for the composition algebra of the Kronecker algebra. J. Reine Angew. Math., 2000, 527: 97-116

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/