Approximate controllability of neutral functional differential systems with state-dependent delay

Xianlong Fu , Jialin Zhang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 291 -308.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (2) : 291 -308. DOI: 10.1007/s11401-016-0934-z
Article

Approximate controllability of neutral functional differential systems with state-dependent delay

Author information +
History +
PDF

Abstract

This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.

Keywords

Approximate controllability / Neutral functional differential system / State-dependent delay / Analytic semigroup / Fractional power operator

Cite this article

Download citation ▾
Xianlong Fu, Jialin Zhang. Approximate controllability of neutral functional differential systems with state-dependent delay. Chinese Annals of Mathematics, Series B, 2016, 37(2): 291-308 DOI:10.1007/s11401-016-0934-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arino O., Habid M., de la Parra R.. A mathematical model of growth of population of fish in the larval stage: Density-dependence effects. Math. Biosc., 1998, 150: 1-20

[2]

Bashirov A. E., Mahmudov N. I.. On concepts of controllability for linear deterministic and stochastic systems. SIAM J. Control Optim., 1999, 37: 1808-1821

[3]

Balasubramaniam P., Ntouyas S. K.. Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space. J. Math. Anal. Appl., 2006, 324: 161-176

[4]

Curtain R., Zwart H. J.. An Introduction to Infinite Dimensional Linear Systems Theory, 1995, New York: Springer-Verlag

[5]

Dauer J. P., Mahmudov N. I.. Approximate controllability of semilinear functional equations in Hilbert spaces. J. Math. Anal. Appl., 2002, 273: 310-327

[6]

Do V. N.. A note on approximate controllability of semilinear systems. Syst. Contr. Lett., 1989, 12: 365-371

[7]

Ezzinbi K., Fu X., Hilal K.. Existence and regularity in the a-norm for some neutral partial differential equations with nonlocal conditions. Nonl. Anal., 2007, 67: 1613-1622

[8]

Fu X., Mei K.. Approximate controllability of semilinear partial functional differential systems. J. Dyn. Contr. Syst., 2009, 15: 425-443

[9]

Guendouzi T., Bousmaha L.. Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay. Qual. Theory Dyn. Syst., 2014, 13: 89-119

[10]

Hale J., Kato J.. Phase space for retarded equations with infinite delay. Funk. ekvac., 1978, 21: 11-41

[11]

Hale J., Verduyn-Lunel S.. Introduction to Functional Differential Equations, 1993, New York: Springer-Verlag

[12]

Hernández E., Henríquez H. R.. Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl., 1998, 221: 452-475

[13]

Hino Y., Murakami S., Naito T.. Functional differential equations with infinite delay, Lecture Notes in Math., 1991, Berlin: Springer-Verlag

[14]

Jeong J., Kwun Y., Park J.. Approximate controllability for semilinear retarded functional differential equations. J. Dyn. Contr. Syst., 1999, 5: 329-346

[15]

Joshi M. C., Sukavanam N.. Approximate solvability of semilinear operator equations. Nonlinearity, 1990, 3: 519-525

[16]

Li X., Yong J.. Optimal Control Theory for Infinite Dimensional Systems, 1995, Berlin: Birkhanser

[17]

Mahaffy J., Belair J., Mackey M.. Hematopoietic model with moving boundary condition and state dependent delay: Applications in Erythropoiesis. J. Theo. Biol., 1998, 190: 135-146

[18]

Mahmudov N. I., Zorlu S.. On the approximate controllability of fractional evolution equations with compact analytic semigroup. J. Comput. Appl. Math. Ser. A, 2014, 259: 194-204

[19]

Muthukumar P., Rajivganthi C.. Approximate controllability of stochastic nonlinear third-order dispersion equation. Internat. J. Robust Nonl. Control, 2014, 24: 585-594

[20]

Naito K.. Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim., 1987, 25: 715-722

[21]

Naito K.. Approximate controllability for trajectories of semilinear control systems. J. Optim. Theory Appl., 1989, 60: 57-65

[22]

Pazy A.. Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983, New York: Springer-Verlag

[23]

Sadovskii B. N.. On a fixed point principle. Funct. Anal. Appl., 1967, 1: 74-76

[24]

Sakthivel R., Ananndhi E. R.. Approximate controllability of impulsive differential equations with state-dependent delay. Inter. J. Control., 2010, 83: 387-393

[25]

Sakthivel R., Mahmudov N. I., Kim J. H.. Approximate controllability of nonlinear impulsive differential systems. Reports Math. Phys., 2007, 60: 85-96

[26]

Sakthivel R., Ren Y.. Approximate controllability of fractional differential equations with statedependent delay. Results Math., 2013, 63: 949-963

[27]

Sakthivel R., Ren Y., Mahmudov N. I.. On the approximate controllability of semilinear fractional differential systems. Comp. Math. Appl., 2011, 62: 1451-1459

[28]

Travis C. C., Webb G. F.. Partial differential equations with deviating arguments in the time variable. J. Math. Anal. Appl., 1976, 56: 397-409

[29]

Travis C. C., Webb G. F.. Existence, stability and compactness in the a-norm for partial functional differential equations. Trans. Amer. Math. Soc., 1978, 240: 129-143

[30]

Naito K.. Approximate controllability for integrodifferential equationswith multiple delays. J. Optim. Theory Appl., 2009, 143: 185-206

[31]

Wu J.. Theory and Applications of Partial Functional Differential Equations, 1996, Berlin: Springer-Verlag

[32]

Yamamoto M., Park J. Y.. Controllability for parabolic equations with uniformly bounded nonlinear terms. J. Optim. Theory Appl., 1990, 66: 515-532

[33]

Yan Z.. Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Contr., 2012, 85: 1051-1062

[34]

Yan Z.. Approximate controllability of fractional neutral integro-differential inclusions with statedependent delay in Hilbert spaces. IMA J. Math. Control Inform., 2013, 30: 443-462

[35]

Zhou H. X.. Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim., 1983, 21: 551-565

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/