Null controllability of some reaction-diffusion systems with only one control force in moving domains

J. Límaco , M. Clark , A. Marinho , S. B. de Menezes , A. T. Louredo

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 29 -52.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 29 -52. DOI: 10.1007/s11401-015-0959-8
Article

Null controllability of some reaction-diffusion systems with only one control force in moving domains

Author information +
History +
PDF

Abstract

In this article, the authors establish the local null controllability property for semilinear parabolic systems in a domain whose boundary moves in time by a single control force acting on a prescribed subdomain. The proof is based on Kakutani’s fixed point theorem combined with observability estimates for the associated linearized system.

Keywords

Kakutani’s fixed point theorem / Unique continuation / Null controllability

Cite this article

Download citation ▾
J. Límaco, M. Clark, A. Marinho, S. B. de Menezes, A. T. Louredo. Null controllability of some reaction-diffusion systems with only one control force in moving domains. Chinese Annals of Mathematics, Series B, 2016, 37(1): 29-52 DOI:10.1007/s11401-015-0959-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benabdallah A., Naso M. G.. Null controllability of a thermoelastic plate. Abstr. Appl. Anal, 2002, 7: 585-599

[2]

Bernardi M. L., Bonfanti G., Lutteroti F.. Abstract Schrödinger type differential equations with variable domain. J. Math. Ann. and Appl, 1997, 211: 84-105

[3]

Cabanillas V. R., De Menezes S. B., Zuazua E.. Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. J. Optm. Theory Appl, 2001, 110(2): 245-264

[4]

Chen G. Q., Frid H.. Divergence-measure fields and hyperbolic conservation laws. Archive Rat. Mech. Anal, 1999, 147(2): 89-118

[5]

Cooper J., Bardos C.. A nonlinear wave equation in a time dependent domain. J. Math. Anal. Appl, 1973, 42: 29-60

[6]

De Menezes S. B., Limaco J., Medeiros L. A.. Remarks on null controllability for semilinear heat equation in moving domains. Eletronic J. of Qualitative Theory of Differential Equations, 2003, 16: 1-32

[7]

Doubova A., Fernández-Cara E., González-Burgos M., Zuazua E.. On the controllability of parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control Optim, 2002, 41(3): 798-819

[8]

Fabre C., Puel J. P., Zuazua E.. Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh, Ser. A, 1995, 125: 31-61

[9]

Fernández-Cara E., Guerrero S.. Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim, 2006, 45(4): 1395-1446

[10]

Fernández-Cara E., Zuazua E.. Null and approximate controllability of weakly blowing-up semilinear heat equations, Ann. Inst. Henri Poincaré. Analyse non Linéaire, 2000, 17(5): 583-616

[11]

Fursikov A., Imanuvilov O.. Controllability of evolution equations, Lecture Notes, 1996, Korea: Seoul National University

[12]

González-Burgos M., Pérez-García R.. Controllability results for some nonlinear coupled parabolic systems by one control force. Asymptot. Anal, 2006, 46(2): 123-162

[13]

He C., Hsiano L.. Two dimensional Euler equations in a time dependent domain. J. Diff. Equations, 2000, 163: 265-291

[14]

Imanuvilov O.Y.u.. Controllability of parabolic equations (in Russian). Mat. Sbornik. Novaya Seriya, 1995, 186: 109-132

[15]

Inoue A.. Sur □ut + u3 = f dans un domaine non-cylindrique. J. Math. Anal. Appl, 1970, 46: 777-819

[16]

Khodja F., Benabdallah A., Dupaix C.. Null controllability of some reaction-diffusion system with one control force. J. Math. Anal. and Appl, 2006, 320: 928-943

[17]

Khodja F., Benabdallah A., Dupaix C., Kostin I.. Controllability to the trajectories of phase-field models by one control force. SIAM J. Control Optim, 2003, 42(5): 1661-1680

[18]

Lions J. L.. Quelques méthodes de résolution des probl`emes aux limites non-linéaires, 1960

[19]

Lions J. L.. Une remarque sur les problèmes d’evolution nonlineaires dans les domaines non cylindriques (in French). Rev. Roumaine Math. Pures Appl, 1964, 9: 11-18

[20]

Medeiros L. A.. Non-linear wave equations in domains with variable boundary. Arch. Rational Mech. Anal, 1972, 47: 47-58

[21]

Miranda M. M., Limaco J.. The Navier-Stokes equation in noncylindrical domain. Comput. Appl. Math, 1997, 16(3): 247-265

[22]

Miranda M. M., Medeiros L. A.. Contrôlabilité exacte de l’équation de Schrödinger dans des domaines non cylindriques. C. R. Acad. Sci. Paris, 1994, 319: 685-689

[23]

Nakao M., Narazaki T.. Existence and decay of some nonlinear wave equations in noncylindrical domains. Math. Rep, 1978, XI-2: 117-125

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/