Characterization of groups L 2(q) by NSE where q ∈ {17, 27, 29}

Changguo Shao , Qinhui Jiang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 103 -110.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 103 -110. DOI: 10.1007/s11401-015-0953-1
Article

Characterization of groups L 2(q) by NSE where q ∈ {17, 27, 29}

Author information +
History +
PDF

Abstract

The authors show that linear simple groups L 2(q) with q ∈ {17, 27, 29} can be uniquely determined by nse(L 2(q)), which is the set of numbers of elements with the same order.

Keywords

Finite groups / Orders / Simple groups / Linear groups

Cite this article

Download citation ▾
Changguo Shao, Qinhui Jiang. Characterization of groups L 2(q) by NSE where q ∈ {17, 27, 29}. Chinese Annals of Mathematics, Series B, 2016, 37(1): 103-110 DOI:10.1007/s11401-015-0953-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mazurov V. D., Khukhro E. I.. Unsolved Problems in Group Theory, The Kourovka Notebook, 2006, Novosibirsk: Sobolev Institute of Mathematics

[2]

Shao C. G., Shi W. J., Jiang Q. H.. Characterization of simple K4-groups. Front. Math. China, 2008, 3: 355-370

[3]

Asboei A. K., Amiri S. S. S., Iranmanesh A., Tehranian A.. A characterization of sporadic simple groups by nse and order. J. Algebra Appl, 2013, 12: 1250158

[4]

Shao C. G., Jiang Q. H.. A new characterization of some linear groups by nse. J. Alg. Appl, 2014, 13: 1350094

[5]

Shen R. L., Shao C. G., Jiang Q. H. A new characterization of A5. Monatsh. Math, 2010, 160: 337-341

[6]

Khatami M., Khosravi B., Akhlaghi Z.. A new characterization for some linear groups. Monatsh. Math, 2011, 163: 39-50

[7]

Zhang Q. L., Shi W. J.. Characterization of L2(16) by te(L2(16)). Journal of Mathematical Research with Applications, 2012, 32(2): 248-252

[8]

Asboei A. K., Amiri S. S. S.. A new characterization of PSL2(25). International Journal of Group Theory, 2012, 1(3): 15-19

[9]

Conway J. H., Curtis R. T., Norton S. P. Atlas of Finite Groups, 1985, London: Oxford Univ. Press

[10]

Frobenius G.. Verallgemeinerung des Sylowschen Satze, Berliner Sitz., 1895 981-993

[11]

Miller G. A.. Addition to a theorem due to Frobenius. Bull. Am. Math. Soc, 1904, 11: 6-7

[12]

Chen G. Y.. On structure of Frobenius groups and 2-Frobenius groups. J. Southwest China Normal University (Natural Science Edition), 1995, 20(5): 185-187

[13]

William J. S.. Prime graph components of finite simple groups. J. Algebra, 1981, 69(1): 487-573

[14]

Herzog M.. On finite simple groups of order divisible by three primes only. J. Algebra, 1968, 120(10): 383-388

[15]

Shi W. J.. On simple K4-groups (in Chinese). Chinese Sci. Bull, 1991, 36(17): 1281-1283

[16]

Cao Z. F.. On simple groups of order 2a1 · 3a2 · 5a3 · 7a4 · pa5 (in Chinese). Chin. Ann. Math, 1995, 16A: 244-250

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/