Solution of center-focus problem for a class of cubic systems

Bo Sang , Chuanze Niu

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 149 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 149 -160. DOI: 10.1007/s11401-015-0950-4
Article

Solution of center-focus problem for a class of cubic systems

Author information +
History +
PDF

Abstract

For a class of cubic systems, the authors give a representation of the nth order Liapunov constant through a chain of pseudo-divisions. As an application, the center problem and the isochronous center problem of a particular system are considered. They show that the system has a center at the origin if and only if the first seven Liapunov constants vanish, and cannot have an isochronous center at the origin.

Keywords

Center variety / Isochronous center / Center conditions / Integrating factor

Cite this article

Download citation ▾
Bo Sang, Chuanze Niu. Solution of center-focus problem for a class of cubic systems. Chinese Annals of Mathematics, Series B, 2016, 37(1): 149-160 DOI:10.1007/s11401-015-0950-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poincaré H.. Mémoire sur les courbes définies par les équations différentielles. J. Math. Pures Appl, 1885, 1: 167-244

[2]

Malkin K. E.. Criteria for the center for a certain differential equation. Volz. Mat. Sb. Vyp, 1964, 2: 87-91

[3]

Chavarriga J., Giné J.. Integrability of cubic systems with degenerate infinity. Differ. Equas Dynam. Syst, 1998, 6: 425-438

[4]

Sadovskii A. P., Shcheglova T. V.. Solution of center-focus problem for a nine-parameter cubic system. Differ. Equas, 2011, 47: 208-223

[5]

Hill J. M., Lloyd N. G., Pearson J. M.. Algorithmic derivation of isochronicity conditions, Nonlin. Anal.: Theory, Methods and Applications, 2007, 67: 52-69

[6]

Hill J. M., Lloyd N. G., Pearson J. M.. Centres and limit cycles for an extended Kukles system. Electron. J. Differential Equations, 2007, 2007: 1-23

[7]

Pearson J. M., Lloyd N. G.. Kukles revisited: Advances in computing techniques. Comput. Math. Appl, 2010, 60: 2797-2805

[8]

Chen X. W., Romanovski V. G.. Linearizability conditions of time-reversible cubic systems. J. Math. Anal. Appl, 2010, 362: 438-449

[9]

Zhang W. N., Hou X. R., Zeng Z. B.. Weak centers and bifurcation of critical periods in reversible cubic system. Comput. Math. Appl, 2000, 40: 771-782

[10]

Chavarriga J., Sabatini M.. A survey of isochronous centers. Qualitative Theory of Dynamical Systems, 1999, 1: 1-70

[11]

Chen X. W., Romanovski V. G., Zhang W. N.. Linearizability conditions of time-reversible quartic systems having homogeneous nonlinearities. Nonlin. Anal.: Theory, Methods and Applications, 2008, 69: 1525-1539

[12]

Romanovski V. G., Chen X. W., Hu Z. P.. Linearizability of linear systems perturbed by fifth degree homogeneous polynomials. J. Phys. A: Math. Theor, 2007, 40: 5905-5919

[13]

Boussaada I.. Contribution to the study of periodic solutions and isochronous centers for planar polynomial systems of ordinary differential equations, 2008 1-94

[14]

Romanovski V. G., Shafer D. S.. The Center and Cyclicity Problems: A Computational Algebra Approach, 2009

[15]

Romanovski V. G., Robnik M.. The centre and isochronicity problems for some cubic systems. J. Phys. A: Math. Gen, 2001, 34: 10267-10292

[16]

Wang D. M.. Mechanical manipulation for a class of differential systems. J. Symb. Comput, 1991, 12: 233-254

[17]

Zhang Z. F., Ding T. R., Huang W. Z., et al., Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, Vol. 101, American Mathematical Society, Rhode Island, 1992.

[18]

Giné J.. On the number of algebraically independent Poincaré-Liapunov constants. Appl. Math. Comput, 2007, 188: 1870-1877

[19]

Wang D. M.. Elimination Practice: Software Tools and Applications, 2004, London: Imperial College Press

[20]

Wang D. M., Epsilon functions. http://www-calfor.lip6.fr/wang/epsilon.pdf

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/