Constructing invariant tori for the spatial Hill lunar problem

Dongfeng Yan

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 125 -136.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 125 -136. DOI: 10.1007/s11401-015-0939-z
Article

Constructing invariant tori for the spatial Hill lunar problem

Author information +
History +
PDF

Abstract

In this paper, the spatial Hill lunar problem is investigated, and the existence of invariant tori of hyperbolic type in a neighborhood of its equilibrium is shown. Moreover, the author checks the non-degenerate condition analytically and obtains two-dimensional elliptic invariant tori on its central manifold as well.

Keywords

Spatial Hill lunar problem / KAM theorem / Quasi-periodic orbits / Elliptic invariant tori

Cite this article

Download citation ▾
Dongfeng Yan. Constructing invariant tori for the spatial Hill lunar problem. Chinese Annals of Mathematics, Series B, 2016, 37(1): 125-136 DOI:10.1007/s11401-015-0939-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold V. I.. Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Mat. Nauk, 1963, 18(6): 91-192

[2]

Arnold V. I.. Engl. Transl.. Russ. Math. Surv, 1963, 18(6): 85-191

[3]

Arnold V. I., Kozlov V. V., Neishtadt A. I.. Mathematical Aspects of Classical and Celestial Mechanics, 2006, Berlin: Springer-Verlag

[4]

Birkhoff G. D.. Dynamical Systems, 1927, Providence, RI: Amer. Math. Soc.

[5]

Carr J.. Applications of Center Manifold Theory, 1981, Berlin: Springer-Verlag

[6]

Chauvineau, B. and Mignard, F., ATLAS of the Circular Planar Hills Problem, Observatoire de la Cote dAzur, CERGA, 1991, 1–71.

[7]

Delshams A., Masdemont J., Roldán P.. Computing the scattering map in the spatial Hill’s problem. Discrete Contin. Dyn. Syst. Ser. B, 2008, 10(2–3): 455-483

[8]

Gómez G., Marcote M., Mondelo J. M.. The invariant manifold structure of the spatial Hill’s problem. Dyn. Syst, 2005, 20: 115-147

[9]

Guckenheimer J., Holmes P.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 1991, New York: Springer-Verlag

[10]

Hénon M.. Numerical exploration of the restricted problem, V, Hills case: Periodic orbits and their stability. Astronomy and Astrophysics, 1969, 1: 223-238

[11]

Hénon M.. Numerical exploration of the restricted problem, VI, Hills case: Non-periodic orbits. Astronomy and Astrophysics, 1970, 9: 24-36

[12]

Hénon M.. Vertical stability of periodic orbits in the restricted problem, Hills case. Astronomy and Astrophysics, 1974, 30: 317-321

[13]

Laub A., Meyer K. R.. Canonical forms for symplectic and Hamiltonian matrices. Celest. Mech, 1974, 9: 213-238

[14]

Mielke A.. Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems, 1991, Berlin: Springer-Verlag

[15]

Moser J.. Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics, 2001, Princeton: Princeton University Press

[16]

Moser J.. Lectures on Hamiltonian Systems, Mem. Amer. Math. Soc., 1968, Providence, RI: American Mathematical Society

[17]

Vashkovyak M. A., Teslenko N. M.. On periodically evolving orbits in the single averaged Hill problem. Astronomy Letters, 2008, 34: 280-288

[18]

Villac B. F.. Dynamics in the Hill problem with applications to spacecraft maneuvers, 2008, Ann Arbor, Michigan: University of Michigan

[19]

Voyatzis G., Gkolias I., Varvoglis H.. The dynamics of the elliptic Hill problem: Periodic orbits and stability regions. Celestial Mechanics and Dynamical Astronomy, 2012, 113(1): 125-139

[20]

Wintner A.. The Analytic Foundations of Celestial Mechanics, 1941, Princeton: Princeton University Press

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/