The pointwise estimates of solutions to the Cauchy problem of a chemotaxis model

Renkun Shi , Weike Wang

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 111 -124.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 111 -124. DOI: 10.1007/s11401-015-0938-0
Article

The pointwise estimates of solutions to the Cauchy problem of a chemotaxis model

Author information +
History +
PDF

Abstract

This paper deals with an attraction-repulsion chemotaxis model (ARC) in multi-dimensions. By Duhamel’s principle, the implicit expression of the solution to (ARC) is given. With the method of Green’s function, the authors obtain the pointwise estimates of solutions to the Cauchy problem (ARC) for small initial data, which yield the W s,p (1 ≤ p ≤ ∞) decay properties of solutions.

Keywords

Chemotaxis model / Pointwise estimates / Green’s function / Decay rates

Cite this article

Download citation ▾
Renkun Shi, Weike Wang. The pointwise estimates of solutions to the Cauchy problem of a chemotaxis model. Chinese Annals of Mathematics, Series B, 2016, 37(1): 111-124 DOI:10.1007/s11401-015-0938-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoff D., Zumbrun K.. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. angew. Math. Phys, 1997, 48: 1-18

[2]

Horstmann D.. From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verien, 2003, 105(3): 103-106

[3]

Keller E. F., Segel L. A.. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol, 1970, 26: 399-415

[4]

Kozono H., Sugiyama Y.. Strong solutions to the Keller-Segel system with the weak Ln2 initial data and its application to the blow-up rate. Math. Nachr, 2010, 283(5): 732-751

[5]

Li H. L., Matsumura A., Zhang G. J.. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch. Ration. Mech. Anal, 2010, 196: 681-713

[6]

Liu J., Wang Z. A.. Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension. J. Biol. Dyn, 2012, 6: 31-41

[7]

Liu T. P., Wang W. K.. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd-multi dimensions. Comm. Math. Phys, 1998, 196: 145-173

[8]

Liu T. P., Zeng Y.. Large Time Behavior of Solutions for General Quasilinear Hyperbolic-Parabolic Systems of Conservation Laws. Mem. Amer. Math. Soc., 1997, 125: 599

[9]

Luca M., Chavez-Ross A., Edelstein-Keshet L., Mogilner A.. Chemotactic singalling, microglia, and alzheimer’s disease senile plaques: Is there a connection?. Bull. Math. Biol, 2003, 65: 673-730

[10]

Nagai T.. Blow-up of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in twodimensional domains. J. Inequal. and Appl, 2001, 6: 37-55

[11]

Nagai T., Syukuinn R., Umesako M.. Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in Rn. Funkcial. Ekvac, 2003, 46: 383-407

[12]

Perthame B., Schmeiser C., Tang M., Vauchelet N.. Traveling plateaus for a hyperbolic kellersegel system with attraction and repulsion-existence and branching instabilitiesn. Nonlinearity, 2011, 24: 1253-1270

[13]

Stein E. M.. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press

[14]

Sugiyama Y., Kunii H.. Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Diff. Eqs, 2006, 227: 333-364

[15]

Tao Y. S., Wang Z. A.. Competing effects of attraction vs. repulsion in chemotaxis. Math. Models Methods Appl. Sci, 2013, 23: 1-36

[16]

Wang W. K., Wu Z. G.. Pointwise estimates of solution for the Navier-Stoks-Piosson equations in multi-dimensions. J. Diff. Eqs, 2010, 248: 1617-1636

[17]

Wang W. K., Yang T.. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J. Diff. Eqs, 2001, 173: 410-450

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/