On the tangent bundle of a hypersurface in a Riemannian manifold

Zhonghua Hou , Lei Sun

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 579 -602.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 579 -602. DOI: 10.1007/s11401-015-0936-2
Article

On the tangent bundle of a hypersurface in a Riemannian manifold

Author information +
History +
PDF

Abstract

Let (M n, g) and (N n+1, G) be Riemannian manifolds. Let TM n and TN n+1 be the associated tangent bundles. Let f: (M n, g) → (N n+1,G) be an isometrical immersion with $g = f*G,F = (f,df):(TM^n ,\bar g) \to (TN^{n + 1} ,G_s )$ be the isometrical immersion with $\bar g = F*G_s$ where (df) x: T x MT f(x) N for any xM is the differential map, and G s be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM n as a submanifold of TN n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TM n in TN n+1. Then the integrability of the induced almost complex structure of TM is discussed.

Keywords

Hypersurfaces / Tangent bundle / Mean curvature vector / Sasaki metric / Almost complex structure / Kählerian form

Cite this article

Download citation ▾
Zhonghua Hou, Lei Sun. On the tangent bundle of a hypersurface in a Riemannian manifold. Chinese Annals of Mathematics, Series B, 2015, 36(4): 579-602 DOI:10.1007/s11401-015-0936-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Deshmukh S., Al-Odan H., Shaman T. A.. Tangent bundle of the hypersurfaces in a Euclidean space. Acta. Math. Acad. Paedagog. Nyházi (N.S.), 2007, 23(1): 71-87

[2]

Klingenberg W., Sasaki S.. On the tangent sphere bundle of a 2-sphere. Tohoku Math. J., 1975, 27: 49-56

[3]

Konno T.. Killing vector fields on tangent sphere bundles. Kodai Math. J., 1998, 21: 61-72

[4]

Konno T., Tanno S.. Geodesics and Killing vector fields on the tangent sphere bundle. Nagoya Math. J., 1998, 151: 91-97

[5]

Kowalski O.. Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold. J. Reine Angew. Math., 1971, 250: 124-129

[6]

Miyaoka R.. Complete hypersurfaces in the space form with three principal curvatures. Math. Z., 1982, 179: 345-354

[7]

Munteanu M. I.. Cheeger Gromoll type metrics on the tangent bundle. Sci. Ann. Univ. Agric. Sci. Vet. Med., 2006, 49(2): 257-268

[8]

Munteanu M. I.. Some aspects on the geometry of the tangent bundles and tangent shpere bundles of a Riemannian manifold. Mediterr. J. Math., 2008, 5: 43-59

[9]

Musso E., Tricerri F.. Riemannian metrics on tangent bundles. Ann. Math. Pura Appl., 1988, 150(4): 1-20

[10]

Nagano T.. Isometries on complex-product spaces. Tensor, New Series, 1959, 9: 47-61

[11]

Nagy P. T.. On the tangent sphere bundle of a Riemannian 2-manifold. Tohôku Math. J., 1977, 29: 203-208

[12]

Nagy P. T.. Geodesics on the tangent sphere bundle of a Riemannian manifold. Geom. Dedicata., 1978, 7(2): 233-243

[13]

Sasaki S.. On the differential geometry of tangent bundles of Riemannian manifolds I, II. Tohoku Math. J., 1958, 10: 338-354

[14]

Sasaki S.. Geodesics on the tangent sphere bundles over space forms. J. Reine Angew. Math., 1976, 288: 106-120

[15]

Tachibana S., Okumura M.. On the almost-complex structure of tangent bundles of Riemannian spaces. Tohoku Math. J., 1962, 14(2): 156-161

[16]

Tashiro Y.. On contact structure of hypersurfaces in complex manifolds I, II. Tohôku Math. J., 1963, 15: 62-78

[17]

Tashiro Y.. On contact structures of tangent sphere bundles. Tohoku Math. J., 1969, 21: 117-143

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/