Degenerate nonlinear elliptic equations lacking in compactness

Maria Mălin , Cristian Udrea

Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 53 -72.

PDF
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 53 -72. DOI: 10.1007/s11401-015-0935-3
Article

Degenerate nonlinear elliptic equations lacking in compactness

Author information +
History +
PDF

Abstract

In this paper, the authors prove the existence of solutions for degenerate elliptic equations of the form −div(a(x)∇ p u(x)) = g(λ, x, |u| p−2u) in ℝ N, where ∇ p u = |∇u|p−2 u and a(x) is a degenerate nonnegative weight. The authors also investigate a related nonlinear eigenvalue problem obtaining an existence result which contains information about the location and multiplicity of eigensolutions. The proofs of the main results are obtained by using the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality and by using a specific minimax method, but without making use of the Palais-Smale condition.

Keywords

Degenerate equations / p-Laplacian / Sobolev weighted spaces / Mountainpass theorem

Cite this article

Download citation ▾
Maria Mălin, Cristian Udrea. Degenerate nonlinear elliptic equations lacking in compactness. Chinese Annals of Mathematics, Series B, 2016, 37(1): 53-72 DOI:10.1007/s11401-015-0935-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brezis H., Marcus M.. Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, 25(1–2): 217-237

[2]

Brezis H., Nirenberg L.. Remarks on finding critical points. Comm. Pure Appl. Math, 1991, 44(8–9): 939-963

[3]

Brezis H., Vázquez J. L.. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid, 1997, 10(2): 443-469

[4]

Caffarelli L., Kohn R., Nirenberg L.. First order interpolation inequalities with weights. Compositio Math, 1984, 53(3): 259-275

[5]

Caldiroli P., Musina R.. On the existence of extremal functions for a weighted Sobolev embedding with critical exponent. Calc. Var. Partial Differential Equations, 1999, 8(4): 365-387

[6]

Caldiroli P., Musina M.. On a variational degenerate elliptic problem. NoDEA Nonlinear Differential Equations Appl, 2000, 7(2): 187-199

[7]

Catrina F., Wang Z. Q.. On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math, 2001, 54(2): 229-258

[8]

Ciarlet P. G.. Linear and Nonlinear Functional Analysis with Applications, 2013, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM)

[9]

Dautray R., Lions J. L.. Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, 1990, Berlin: Springer-Verlag

[10]

Davies E. B.. A review of Hardy inequalities, The Maz’ya Anniversary Collection, 1999, Basel: Birkhä user 55-67

[11]

Hardy G. H.. Note on a theorem of Hilbert. Math. Z, 1920, 6: 314-317

[12]

Kawohl B.. On a family torsional creep problems. J. Reine Angew. Math, 1990, 410: 1-22

[13]

Kohn R., Nirenberg L.. Degenerate elliptic-parabolic equations of second order. Comm. Pure Appl. Math, 1967, 20: 797-872

[14]

Motreanu D.. A saddle point approach to nonlinear eigenvalue problems. Math. Slovaca, 1997, 47(4): 463-477

[15]

Motreanu D., Rădulescu V.. Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Nonconvex Optimization and Its Applications, 2003, Dordrecht: Kluwer Academic

[16]

Motreanu D., Rădulescu V.. Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media. Boundary Value Problems, 2005, 2: 107-127

[17]

Oh Y. G.. Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (Va). Comm. Partial Differential Equations, 1988, 13(12): 1499-1519

[18]

Pélissier M. C., Reynaud M. L.. Etude d’un modèle mathématique d’écoulement de glacier. C. R. Acad. Sci. Paris Sér. I Math, 1974, 279: 531-534

[19]

Showalter R. E., Walkington N. J.. Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal, 1991, 22: 1702-1722

[20]

Stredulinsky E. W.. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Lecture Notes in Mathematics, 1984, Berlin: Springer-Verlag

[21]

Vazquez J. L., Zuazua E.. The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential. J. Funct. Anal, 2000, 173(1): 103-153

[22]

Wang Z. Q., Willem M.. Singular minimization problems. J. Differential Equations, 2000, 161(2): 307-320

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/