On functional relations for the alternating analogues of Tornheim’s double zeta function

Zhonghua Li

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 907 -918.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 907 -918. DOI: 10.1007/s11401-015-0933-5
Article

On functional relations for the alternating analogues of Tornheim’s double zeta function

Author information +
History +
PDF

Abstract

In this paper, new proofs of two functional relations for the alternating analogues of Tornheim’s double zeta function are given. Using the functional relations, the author gives new proofs of some evaluation formulas found by Tsumura for these alternating series.

Keywords

Tornheim’s double zeta function / Riemann zeta function / Functional relations

Cite this article

Download citation ▾
Zhonghua Li. On functional relations for the alternating analogues of Tornheim’s double zeta function. Chinese Annals of Mathematics, Series B, 2015, 36(6): 907-918 DOI:10.1007/s11401-015-0933-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arakawa T., Kaneko M.. On multiple L-values. J. Math. Soc. Japna, 2004, 56(4): 967-991

[2]

Huard J. G., Williams K. S., Zhang N. Y.. On Tornheim’s double series. Acta Arith, 1996, 75(2): 105-117

[3]

Matsumoto K. Bennett M. A., Berndt B. C., Boston N. On the analytic continuation of various multiple-zeta functions, Number Theory for the Millennium II. Proc. of the Millennial Conference on Number Theory, 2002 417-440

[4]

Matsumoto K., Nakamura T., Ochiai H., Tsumura H.. On value-relations, functional relations and singularities of Mordell-Tornheim and related triple zeta-functions. Acta Arith, 2008, 132(2): 99-125

[5]

Mordell L. J.. On the evaluation of some multiple series. J. London Math. Soc, 1958, 33: 368-371

[6]

Nakamura T.. A functional relation for the Tornheim double zeta function. Acta Arith, 2006, 125(3): 257-263

[7]

Nakamura T.. Double Lerch series and their functional relations. Aequationes Math, 2008, 75(3): 251-259

[8]

Nakamura T.. Double Lerch value relations and functional relations for Witten zeta functions. Tokyo J. Math, 2008, 31(2): 551-574

[9]

Subbarao M. V., Sitaramachandrarao R.. On some infinite series of L. J. Mordell and their analogues. Pacific J. Math, 1985, 119: 245-255

[10]

Tornheim L.. Harmonic double series. Amer. J. Math, 1950, 72: 303-314

[11]

Tsumura H.. On some combinatorial relations for Tornheim’s double series. Acta Arith, 2002, 105(3): 239-252

[12]

Tsumura H.. On alternating analogues of Tornheim’s double series. Proc. Amer. Math. Soc, 2003, 131: 3633-3641

[13]

Tsumura H.. Evaluation formulas for Tornheim’s type of alternating double series. Math. Comp, 2004, 73: 251-258

[14]

Tsumura H.. On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function. Math. Proc. Camb. Phil. Soc, 2007, 142: 395-405

[15]

Tsumura H.. On alternating analogues of Tornheim’s double series II. Ramanujan J, 2009, 18: 81-90

[16]

Zhao J.. A note on colored Tornheim’s double series. Integers, 2010, 10(6): 879-882

[17]

Zhou X., Cai T., Bradley D. M.. Signed q-analogs of Tornheim’s double series. Proc. Amer. Math. Soc, 2008, 136(8): 2689-2698

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/