On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation

Jihong Zhao , Qiao Liu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 947 -956.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 947 -956. DOI: 10.1007/s11401-015-0932-6
Article

On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation

Author information +
History +
PDF

Abstract

The authors establish a Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation. More precisely, it is shown that if the smooth solution θ satisfies ∇θ ∈ L q(0, T;L q(R2)) with $\frac{\alpha }{q} + \frac{2}{p} \leqslant \alpha + \beta - 1$, then the solution θ can be smoothly extended after time T. In particular, when α + β ≥ 2, it is shown that if ∂yθ ∈ L q(0, T;L q(R2)) with $\frac{\alpha }{q} + \frac{2}{p} \leqslant \alpha + \beta - 1$, then the solution θ can also be smoothly extended after time T. This result extends the regularity result of Yamazaki in 2012.

Keywords

β-generalized quasi-geostrophic equation / Weak solution / Serrin’s regularity criterion

Cite this article

Download citation ▾
Jihong Zhao, Qiao Liu. On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation. Chinese Annals of Mathematics, Series B, 2015, 36(6): 947-956 DOI:10.1007/s11401-015-0932-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abidi H., Hmidi T.. On the global well-posedness of the critical quasi-geostrophic equation. SIAM J. Math. Anal, 2008, 40: 167-185

[2]

Benameura J., Benhamedb M.. Global existence of the two-dimensional QGE with sub-critical dissipation. J. Math. Anal. Appl, 2015, 423: 1330-1347

[3]

Biswas A.. Gevrey regularity for the supercritical quasi-geostrophic equation. J. Diff. Eq, 2014, 257: 1753-1772

[4]

Caffarelli L., Vasseur A.. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math, 2010, 171: 1903-1930

[5]

Cao C., Wu J.. Two regularity criteria for the 3D MHD equations. J. Diff. Eq, 2010, 248: 2263-2274

[6]

Chae D.. On the regularity conditions for the dissipative quasi-geostrophic equations. SIAM J. Math. Anal, 2006, 37: 1649-1656

[7]

Chae D., Lee J.. Global well-posedness in the super-critical dissipative quasigeostrophic equations. Commun. Math. Phys, 2003, 233: 297-311

[8]

Chen Q., Miao C., Zhang Z.. A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equatio. Commun. Math. Phys, 2007, 271: 821-838

[9]

Chen Q., Zhang Z.. Global well-posedness of the 2D critical dissipative quasigeostrophic equation in the Triebel-Lizorkin spaces. Nonlinear Anal, 2007, 67: 1715-1725

[10]

Constantin P., Córdoba D., Wu J.. On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J, 2001, 50: 97-107

[11]

Constantin P., Iyer G., Wu J.. Global regularity for a modified critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J, 2011, 57: 97-107

[12]

Constantin P., Majda A. J., Tabak E.. Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity, 1994, 7: 1495-1533

[13]

Constantin P., Wu J.. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal, 1999, 30: 937-948

[14]

Córdoba A., Córdoba D.. A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys., 2004, 249: 511-528

[15]

Dong B., Chen Z.. A remark on regularity criterion for the dissipative quasi-geostrophic equations. J. Math. Anal. Appl, 2007, 329: 1212-1217

[16]

Dong H., Pavlovic N.. A regularity criterion for the dissipation quasi-geostrophic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2009, 26: 1607-1619

[17]

Fan J., Gao H., Nakamura G.. Regularity criteria for the generalized magnetohydrodynamic equations and the quasi-geostrophic equations. Taiwanese J. Math, 2011, 15(3): 1059-1073

[18]

He C.. Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electronic J. Diff. Eq, 2002, 29: 1-13

[19]

Jia Y., Dong B.. Remarks on the logarithmical regularity criterion of the supercritical surface quasigeostrophic equation in Morrey spaces. Appl. Math. Lett, 2015, 43: 80-84

[20]

Kato T., Ponce G.. Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math, 1988, 41: 891-907

[21]

Kiselev A.. Regularity and blow-up for active scalars. Math. Model. Nat. Phenom, 2010, 5(4): 225-255

[22]

Kiselev A., Nazarov F., Volberg A.. Global well-posedness for the critical 2D dissipative quasigeostrophic equation. Invent. Math, 2007, 167: 445-453

[23]

Kukavica I., Ziane M.. Navier-Stokes equations with regularity in one direction. J. Math. Phys, 2007, 48: 065203

[24]

Lazer O.. Global existence for the critical dissipative surface quasi-geostrophic equation. Commun. Math. Phys, 2013, 322: 73-93

[25]

Liu Q., Zhao J., Cui S.. A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity. J. Math. Phys, 2011, 52: 033102

[26]

Miao C., Xue L.. Global wellposedness for a modified critical dissipative quasi-geostrophic equation. J. Diff. Eq., 2012, 252(1): 792-818

[27]

Pedlosky J.. Geophysical Fluid Dynamics, 1987, New York: Springer-Verlag

[28]

Resnick S.. Dynamical Problems in Nonlinear Advective Partial Differential Equations, 1995, Chicago: University of Chicago

[29]

Silvestre L., Vicol V., Zlatoš A.. On the loss of continuity for super-critical drift-diffusion equations. Arch. Rational Mech. Anal, 2013, 207: 845-877

[30]

Xiang Z.. A regularity criterion for the critical and supercritical dissipative quasi-geostrophic equations. Appl. Math. Lett, 2010, 23: 1286-1290

[31]

Xue L., Zheng X.. Note on the well-posedness of a slightly supercritical surface quasi-geostrophic equation. J. Diff. Eq, 2012, 253: 795-813

[32]

Yamazaki, K., A remark on the global well-posedness of a modified critical quasi-geostrophic equation. arXiv: 1006.0253v2

[33]

Yamazaki K.. On the regularity criteria of a surface quasi-geostrophic equation. Nonlinear Analysis, 2012, 75: 4950-4956

[34]

Yuan J.. On regularity criterion for the dissipative quasi-geostrophic equations. J. Math. Anal. Appl, 2008, 340: 334-339

[35]

Zelati, M. C. and Vicol, V., On the global regularity for the supercritical SQG equation. arXiv: 1410.3186v1

[36]

Zhou Y.. A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl., 2005, 84: 1496-1514

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/