Eventual positivity of Hermitian polynomials and integral operators
Colin Tan
Chinese Annals of Mathematics, Series B ›› 2016, Vol. 37 ›› Issue (1) : 83 -94.
Eventual positivity of Hermitian polynomials and integral operators
Quillen proved that if a Hermitian bihomogeneous polynomial is strictly positive on the unit sphere, then repeated multiplication of the standard sesquilinear form to this polynomial eventually results in a sum of Hermitian squares. Catlin-D’Angelo and Varolin deduced this positivstellensatz of Quillen from the eventual positive-definiteness of an associated integral operator. Their arguments involve asymptotic expansions of the Bergman kernel. The goal of this article is to give an elementary proof of the positive-definiteness of this integral operator.
Asymptotics / Polynomial / Positivity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
/
| 〈 |
|
〉 |