On locally primitive graphs of order 18p

Hua Han , Zaiping Lu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 919 -936.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 919 -936. DOI: 10.1007/s11401-015-0928-2
Article

On locally primitive graphs of order 18p

Author information +
History +
PDF

Abstract

The authors investigate locally primitive bipartite regular connected graphs of order 18p. It is shown that such a graph is either arc-transitive or isomorphic to one of the Gray graph and the Tutte 12-cage.

Keywords

Locally primitive graph / Arc-transitive graph / Normal cover / Quasi-primitive group

Cite this article

Download citation ▾
Hua Han, Zaiping Lu. On locally primitive graphs of order 18p. Chinese Annals of Mathematics, Series B, 2015, 36(6): 919-936 DOI:10.1007/s11401-015-0928-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aschbacher M.. Finite Group Theory, 1993, Cambridge: Cambridge University Press

[2]

Cameron P. J.. Permutation Groups, 1999, Cambridge: Cambridge University Press

[3]

Conder M., Dobcsányi P.. Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput, 2002, 40: 41-63

[4]

Conder M. D., Li C. H., Praeger C. E.. On the Weiss conjecture for finite locally primitive graphs. Proc. Edinburgh Math. Soc. (2), 2000, 43: 129-138

[5]

Conder M., Malnič A., Marušič D., Potočnik P.. A census of semisymmetric cubic graphs on up to 768 vertices. J. Algebr. Comb, 2006, 23: 255-294

[6]

Conway J. H., Curtis R. T., Noton S. P. Atlas of Finite Groups, 1985, Oxford: Clarendon Press

[7]

Dixon J. D., Mortimer B.. Permutation Groups, Springer-Verlag, 1996, Heidelberg: New York, Berlin

[8]

Du S. F., Xu M. Y.. A classification of semisymmetric graphs of order 2pq. Comm. Algebra, 2000, 28(6): 2685-2714

[9]

Fang X. G., Havas G., Praeger C. E.. On the automorphism groups of quasi-primitive almost simple graphs. J. Algebra, 1999, 222: 271-283

[10]

Fang X. G., Ma X. S., Wang J.. On locally primitive Cayley graphs of finite simple groups. J. Combin. Theory Ser. A, 2011, 118: 1039-1051

[11]

Fang X. G., Praeger C. E.. On graphs admitting arc-transitive actions of almost simple groups. J. Algebra, 1998, 205: 37-52

[12]

Fang X. G., Praeger C. E., Wang J.. Locally primitive Cayley graphs of finite simple groups. Sci. China Ser. A, 2001, 44: 58-66

[13]

Folkman J.. Regular line-symmetric graphs. J. Combin Theory Ser. B, 1967, 3: 215-232

[14]

Giudici M., Li C. H., Praeger C. E.. Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc, 2004, 356: 291-317

[15]

Gorenstein D.. Finite Simple Groups, 1982, New York: Plenum Press

[16]

Han H., Lu Z. P.. Semisymmetric graphs of order 6p 2 and prime valency. Sci. China Math, 2012, 55: 2579-2592

[17]

Electronic J. Combin, 2013, 20 2

[18]

Han, H. and Lu, Z. P., Semisymmetric graphs arising from primitive permutation groups of degree 9p, Sci. China Math., 58, 2015, to appear. DOI: 10.1007/s11425-000-0000-0

[19]

Huppert B.. Endliche Gruppen I, 1967, Berlin: Springer-Verlag

[20]

Huppert B., Blackburn N.. Finite Groups II, 1982, Berlin: Springer-Verlag

[21]

Iranmanesh M. A.. On finite G-locally primitive graphs and the Weiss conjecture. Bull. Austral. Math. Soc, 2004, 70: 353-356

[22]

Li C. H., Lou B. G., Pan J. M.. Finite locally primitive abelian Cayley graphs. Sci. China Math, 2011, 54: 845-854

[23]

Li C. H., Ma L.. Locally primitive graphs and bidirect products of graphs. J. Aust. Math. Soc, 2011, 91: 231-242

[24]

Li C. H., Pan J. M., Ma L.. Locally primitive graphs of prime-power order. J. Aust. Math. Soc, 2009, 86: 111-122

[25]

Lu Z. P.. On the automorphism groups of bi-Cayley graphs. Beijing Daxue Xuebao, 2003, 39: 1-5

[26]

Lu Z. P., Wang C. Q., Xu M. Y.. On semisymmetric cubic graphs of order 6p 2. Sci. China Ser. A, 2004, 47(1): 1-17

[27]

Malnič A., Marušič D., Wang C. Q.. Cubic edge-transitive graphs of order 2p 3. Discrete Math, 2004, 274: 187-198

[28]

Pan, J. M., Locally primitive normal Cayley graphs of metacyclic groups, Electron. J. Combin., 16, 2009, Research Paper 96.

[29]

Praeger C. E.. Imprimitive symmetric graphs. Ars. Combin, 1985, 19A: 149-163

[30]

Praeger C. E.. An o’Nan-Scott theorem for finite quasi-primitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc, 1992, 47: 227-239

[31]

Spiga P.. On G-locally primitive graphs of locally twisted wreath type and a conjecture of Weiss. J. Combin. Theory Ser. A, 2011, 118: 2257-2260

[32]

Weiss R.. s-Transitive graphs, Algebraic methods in graph theory, Colloq. Math. Soc. János Bolyai, 1981, 25: 827-847

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/