The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary

Jingchen Hu , Yiqian Shi , Bin Xu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 991 -1000.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 991 -1000. DOI: 10.1007/s11401-015-0924-6
Article

The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary

Author information +
History +
PDF

Abstract

Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian Δ on a compact Riemannian manifold M with boundary such that Δe λ = λ2 e λ in the interior of M and the normal derivative of e λ vanishes on the boundary of M. Let χλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate for χλ f as $\lambda \geqslant 1:{\left\| {\nabla {\chi _\lambda }{\kern 1pt} \left. f \right\|} \right._\infty } \leqslant C\left( {\lambda \left\| {{\chi _\lambda }{{\left. f \right\|}_\infty } + \left. {{\lambda ^{ - 1}}} \right\|} \right.\Delta {\chi _\lambda }{{\left. f \right\|}_\infty }} \right)$, where C is a positive constant depending only on M. As a corollary, the authors obtain the gradient estimate of eλ: For every λ ≥ 1, it holds that $\left\| {\nabla {{\left. {{e_\lambda }} \right\|}_\infty } \leqslant C\left. \lambda \right\|} \right.{\left. {{e_\lambda }} \right\|_\infty }$.

Keywords

Neumann eigenfunction / Gradient estimate

Cite this article

Download citation ▾
Jingchen Hu, Yiqian Shi, Bin Xu. The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary. Chinese Annals of Mathematics, Series B, 2015, 36(6): 991-1000 DOI:10.1007/s11401-015-0924-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brandt A.. Interior estimates for second order elliptic differential (or finite difference) equations via the maximum principle. Israel J. Math, 1969, 7: 95-121

[2]

Brüning J.. Über knoten von eigenfunktionen des Laplace-Beltrami operators. Math. Z., 1975, 158: 15-21

[3]

Donnelly H., Fefferman C.. Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math, 1988, 93(1): 161-183

[4]

Donnelly H., Fefferman C.. Growth and geometry of eigenfunctions of the Laplacian. Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., New York, 1990, 122: 635-655

[5]

Duong X. T., Ouhabaz E. M., Sikora A.. Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal, 2002, 196: 443-485

[6]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 2001, Berlin: Springer-Verlag

[7]

Grieser D.. Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary. Comm. Partial Differential Equations, 2002, 27(7–8): 1283-1299

[8]

Hörmander L.. The Analysis of Linear Partial Differential Equations III, Corrected Second Printing, 1994, Tokyo: Springer-Verlag

[9]

Seeger A., Sogge C. D.. On the boundedness of functions of pseudo-differential operators on a compact manifolds. Duke Math. J, 1989, 59: 709-736

[10]

Shi Y. Q., Xu B.. Gradient estimate of an eigenfunction on a compact Riemannian manifold without boundary. Ann. Glob. Anal. Geom, 2010, 38(1): 21-26

[11]

Shi, Y. Q. and Xu, B., Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary, Forum Math., DOI: 10.1515/FORM.2011.115

[12]

Smith H. F.. Sharp L 2L q bounds on the spectral projectors for low regularity metrics. Math. Res. Lett, 2006, 13(5–6): 967-974

[13]

Xu X.. Gradient estimates for eigenfunctions of compact manifolds with boundary and the Hörmander multiplier theorem. Forum Mathematicum, 2009, 21(3): 455-476

[14]

Xu X.. Eigenfunction estimates for Neumann Laplacian and applications to multiplier problems. Proc. Amer. Math. Soc, 2011, 139: 3583-3599

[15]

Zelditch S.. Local and global analysis of eigenfunctions on Riemannian manifolds, 2008 545-658

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/