The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary
Jingchen Hu , Yiqian Shi , Bin Xu
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 991 -1000.
The gradient estimate of a Neumann eigenfunction on a compact manifold with boundary
Let eλ(x) be a Neumann eigenfunction with respect to the positive Laplacian Δ on a compact Riemannian manifold M with boundary such that Δe λ = λ2 e λ in the interior of M and the normal derivative of e λ vanishes on the boundary of M. Let χλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M. The authors show the following gradient estimate for χλ f as $\lambda \geqslant 1:{\left\| {\nabla {\chi _\lambda }{\kern 1pt} \left. f \right\|} \right._\infty } \leqslant C\left( {\lambda \left\| {{\chi _\lambda }{{\left. f \right\|}_\infty } + \left. {{\lambda ^{ - 1}}} \right\|} \right.\Delta {\chi _\lambda }{{\left. f \right\|}_\infty }} \right)$, where C is a positive constant depending only on M. As a corollary, the authors obtain the gradient estimate of eλ: For every λ ≥ 1, it holds that $\left\| {\nabla {{\left. {{e_\lambda }} \right\|}_\infty } \leqslant C\left. \lambda \right\|} \right.{\left. {{e_\lambda }} \right\|_\infty }$.
Neumann eigenfunction / Gradient estimate
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
Shi, Y. Q. and Xu, B., Gradient estimate of a Dirichlet eigenfunction on a compact manifold with boundary, Forum Math., DOI: 10.1515/FORM.2011.115 |
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |