OD-Characterization of alternating and symmetric groups of degree p + 5

Yanxiong Yan , Haijing Xu , Guiyun Chen

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1001 -1010.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1001 -1010. DOI: 10.1007/s11401-015-0923-7
Article

OD-Characterization of alternating and symmetric groups of degree p + 5

Author information +
History +
PDF

Abstract

In this paper, it is proved that all the alternating groups A p+5 are OD-characterizable and the symmetric groups S p+5 are 3-fold OD-characterizable, where p+4 is a composite number and p + 6 is a prime and 5 ≠ p ∈ π(1000!).

Keywords

Prime graph / Degree pattern / Degree of a vertex / Finite simple groups / Alternating and symmetric groups

Cite this article

Download citation ▾
Yanxiong Yan, Haijing Xu, Guiyun Chen. OD-Characterization of alternating and symmetric groups of degree p + 5. Chinese Annals of Mathematics, Series B, 2015, 36(6): 1001-1010 DOI:10.1007/s11401-015-0923-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Williams J. S.. Prime graph components of finite groups. J. Algebra, 1981, 69(2): 487-513

[2]

Conway J. H., Curtis R. T., Norton S. P. Atlas of Finite Groups, 1985, Oxford, London, New York: Clarendon Press

[3]

Moghaddamfar A. R., Zokayi A. R., Darafsheh M. R.. A characterization of finite simple groups by the degrees of vertices of their prime graphs. Algebra Collo, 2005, 12(3): 431-442

[4]

Hoseini A. A., Moghaddamfar A. R.. Recognizing alternating groups A p+3 for certain primes p by their orders and degree patterns. Front. Math. China, 2010, 5(3): 541-553

[5]

Moghaddamfar A. R., Zokayi A. R.. Recognizing finite groups through order and degree pattern. Algebra Colloq, 2008, 15(3): 449-456

[6]

Zhang L. C., Shi W. J.. OD-characterization of simple K 4-groups. Algebra Colloq, 2009, 16(2): 275-282

[7]

Zhang L. C., Shi W. J.. OD-characterization of all nonabelian simple groups whose orders are less than 108. Front. Math. China, 2008, 3(3): 461-474

[8]

Zhang L. C., Liu X.. OD-Characterization of the projective general linear groups PGL(2, q) by their orders and degree patterns. International Journal of Algebra and Computation, 2009, 19(7): 873-889

[9]

Zhang L. C., Shi W. J.. OD-Characterization of almost simple groups related to L 2(49). Archivum Mathematicum(BRNO), 2008, 44: 191-199

[10]

Yan Y. X.. OD-characterization of certain symmetric groups having connected prime graphs. J. Southwest Univ., 2011, 36(5): 110-114

[11]

Yan Y. X., Chen G. Y.. OD-characterization of the automorphism groups of O ± 10(2). Indian J. Pure Appl. Math, 2012, 43(3): 183-195

[12]

Yan Y. X., Xu H. J., Chen G. Y.. OD-characterization of the automorphism groups of simple K 3-groups. J. Ineq. and Appl, 2013, 95: 1-12

[13]

Moghaddamfar A. R., Zokayi A. R.. OD-Characterizability of certain finite groups having connected prime graphs. Algebra Colloq, 2010, 17(1): 121-130

[14]

Akbari M., Moghaddamfar A. R.. Simple groups which are 2-fold OD-characterizable. Bull. Malays. Math. Sci. Soc., 2012, 35(2): 65-77

[15]

Zhang L. C., Shi W. J., Yu D. P., Wang J.. Recognition of finite simple groups whose first prime graph components are r-regular. Bull. Malays. Math. Sci. Soc., 2013, 36(1): 131-142

[16]

Yan Y. X.. OD-characterization of almost simple groups related to the chevalley group F 4(2). J. Southwest Univ, 2011, 33(5): 112-115

[17]

Koganni-Moghaddam R., Moghaddamfar A. R.. Groups with the same order and degree pattern. Science China Mathematics, 2012, 55(4): 701-720

[18]

Moghaddamfar A. R., Zokayi A. R.. OD-Characterization of alternating and symmetric groups of degrees 16 and 22. Front. Math. China, 2009, 4(4): 669-680

[19]

Zhang L. C., Shi W. J.. OD-Characterization of almost simple groups related to U 3(5). Acta Mathematica Sinica Ser. B, 2010, 26(1): 161-168

[20]

Zhang L. C., Shi W. J.. OD-Characterization of almost simple groups related to U 6(2). Acta Mathematica Scientia Ser. B, 2011, 31(2): 441-450

[21]

Zavarnitsine A., Mazurov V. D.. Element orders in covering of symmetric and alternating groups. Algrbra and Logic, 1999, 38(3): 159-170

[22]

Higman G.. Finite groups in which every element has prime power order. J. London Math. Soc, 1957, 32: 335-342

[23]

Wang G. M.. Elementary Number Theory, 2008, Beijing: People’s Education Press

[24]

Zavarnitsine A. V.. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports, 2009, 6: 1-12

[25]

Zavarnitsin A. V.. Recognition of alternating groups of degrees r + 1 and r + 2 for prime r and the group of degree 16 by their element order sets. Algebra and Logic, 2000, 39(6): 370-477

[26]

Shi W. J.. A new characterization of some simple groups of Lie type. Contemporary Math, 1989, 82: 171-180

[27]

Vasil’ev A. V., Grechkoseeva M. A., Mazurov V. D.. Characterization of finite simple groups by spectrum and order. Algebra and Logic, 2009, 48(6): 385-409

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/