Vertex representations of toroidal special linear Lie superalgebras

Naihuan Jing , Chongbin Xu

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 427 -436.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 427 -436. DOI: 10.1007/s11401-015-0921-9
Article

Vertex representations of toroidal special linear Lie superalgebras

Author information +
History +
PDF

Abstract

Based on the loop-algebraic presentation of 2-toroidal Lie superalgebras, a free field representation of toroidal Lie superalgebras of type A(m, n) is constructed using both vertex operators and bosonic fields.

Keywords

Toroidal Lie superalgebras / Vertex operators / Free fields

Cite this article

Download citation ▾
Naihuan Jing, Chongbin Xu. Vertex representations of toroidal special linear Lie superalgebras. Chinese Annals of Mathematics, Series B, 2015, 36(3): 427-436 DOI:10.1007/s11401-015-0921-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhargava S, Chen H, Gao Y. A family of representations of the Lie superalgebra \widehat{gl}_{1|l - 1} (C_q ). J. Alg., 2013, 386: 61-76

[2]

Eswara Rao S. Representation of toroidal general linear superalgebras. Commun. Alg., 2013, 42: 2476-2507

[3]

Eswara Rao S, Moody R V. Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebra. Commun. Math. Phys., 1994, 159: 239-264

[4]

Feingold A J, Frenkel I B. Classical affine algebras. Adv. Math., 1985, 56: 117-172

[5]

Frenkel I B, Jing N, Wang W. Vertex representations via finite groups and the MaKay correspondence. Int. Math. Res. Notices, 2000, 4: 195-222

[6]

Frenkel I B, Lepowsky J, Meuraman A. Vertex Operator Algebras and the Monster, 1988, Boston: Academic Press

[7]

Iohara K, Koga Y. Central extensions of Lie superalgebras. Commun. Math. Helv., 2001, 76: 110-154

[8]

Jiang C, Meng D. Vertex representations for the ν + 1-toroidal Lie algebra of type B l. J. Alg., 2001, 246: 564-593

[9]

Jing N, Misra K C. Fermionic realization of toroidal Lie algebras of classical types. J. Alg., 2010, 324: 183-194

[10]

Jing N, Misra K C, Tan S. Bosonic realizations of higher level toroidal Lie algebras. Pacific J. Math., 2005, 219: 285-302

[11]

Jing N, Misra K C, Xu C. Bosonic realization of toroidal Lie algebras of classical types. Proc. AMS, 2009, 137: 3609-3618

[12]

Jing N, Xu C. Toroidal Lie superalgebras and free field representations. Contemp. Math., 2014, 623: 135-153

[13]

Kac V G. Vertex Algebras for Beginners, 1997, Providence: AMS

[14]

Kac V G, Wakimoto M. Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys., 2001, 215: 631-682

[15]

Kac V G, Wang W. Vertex operator superalgebras and their representations. Contemp. Math., 1994, 175: 161-191

[16]

Lau M. Representations of multiloop algebras. Pacific J. Math., 2010, 245: 167-184

[17]

Liu D, Hu N. Vertex representations for toroidal Lie algebra of type G. J. Pure Appl. Alg., 2005, 198: 257-279

[18]

Moody R V, Rao S E, Yokonuma T. Toroidal Lie algebras and vertex representations. Geom. Ded., 1990, 35: 283-307

[19]

Rao S E, Zhao K. On integrable representations for toroidal Lie superalgebras. Contemp. Math., 2004, 343: 243-261

[20]

Tan S. Vertex operator representations for toroidal Lie algebra of type Bl. Commun. Alg., 1999, 27: 3593-3618

[21]

Xu X. Introduction to Vertex Operator Superalgebras and Their Modules, 1998, Dordrecht: Kluwer Academic Publishers

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/