On the dual Orlicz mixed volumes

Hailin Jin , Shufeng Yuan , Gangsong Leng

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1019 -1026.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1019 -1026. DOI: 10.1007/s11401-015-0920-x
Article

On the dual Orlicz mixed volumes

Author information +
History +
PDF

Abstract

In this paper, the authors define a harmonic Orlicz combination and a dual Orlicz mixed volume of star bodies, and then establish the dual Orlicz-Minkowski mixedvolume inequality and the dual Orlicz-Brunn-Minkowksi inequality.

Keywords

Convex body / Harmonic Orlicz combination / Dual Orlicz mixed volume / Dual Orlicz-Brunn-Minkowski inequality

Cite this article

Download citation ▾
Hailin Jin, Shufeng Yuan, Gangsong Leng. On the dual Orlicz mixed volumes. Chinese Annals of Mathematics, Series B, 2015, 36(6): 1019-1026 DOI:10.1007/s11401-015-0920-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lutwak E.. Dual mixed volumes. Pacific J. Math, 1975, 58(2): 531-538

[2]

Lutwak E.. Intersection bodies and dual mixed volumes. Adv. Math, 1988, 71: 232-261

[3]

Lutwak E.. Centroid bodies and dual mixed volumes. Proc. London Math. Soc, 1990, 60(3): 365-391

[4]

Zhang G.. Centered bodies and dual mixed volumes. Trans. Amer. Math. Soc., 1994, 345(2): 777-801

[5]

Gardner R. J.. Stability of inequality in the dual Brunn-Minkowski theory. J. Math. Anal. Appl, 1999, 231: 568-587

[6]

Klain D.. Star valuation and dual mixed volumes. Adv. Math, 1996, 121: 80-101

[7]

Gardner R. J., Hug D., Weil W.. The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities. J. Differental Geom., 2014, 97(3): 427-476

[8]

Haberl C., Lutwak E., Yang D., Zhang G.. The even Orlicz Minkowski problem. Adv. Math, 2010, 224: 2485-2510

[9]

Huang Q., He B.. On the Orlicz Minkowski problem for polytopes. Discrete Comput. Geom, 2012, 48: 281-297

[10]

Lutwak E., Yang D., Zhang G.. Orlicz projection bodies. Adv. Math, 2010, 223: 220-242

[11]

Lutwak E., Yang D., Zhang G.. Orlicz centroid bodies. J. Differential Geom, 2010, 84: 365-387

[12]

Xi D., Jin H., Leng G.. The Orlicz Brunn-Minkowski inequality. Adv. Math, 2014, 260: 350-374

[13]

Lutwak E.. The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas. Adv. Math, 1996, 118(2): 244-294

[14]

He R., Leng G.. A strong law of large numbers on the harmonic p-combination. Geom. Dedicata, 2011, 154: 103-116

[15]

Rudin W.. Principles of Mathematical Analysis, 1976, U. S. A.: McGraw-Hill Companies

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/