On the first Hochschild cohomology of admissible algebras

Fang Li , Dezhan Tan

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1027 -1042.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 1027 -1042. DOI: 10.1007/s11401-015-0919-3
Article

On the first Hochschild cohomology of admissible algebras

Author information +
History +
PDF

Abstract

The aim of this paper is to investigate the first Hochschild cohomology of admissible algebras which can be regarded as a generalization of basic algebras. For this purpose, the authors study differential operators on an admissible algebra. Firstly, differential operators from a path algebra to its quotient algebra as an admissible algebra are discussed. Based on this discussion, the first cohomology with admissible algebras as coefficient modules is characterized, including their dimension formula. Besides, for planar quivers, the k-linear bases of the first cohomology of acyclic complete monomial algebras and acyclic truncated quiver algebras are constructed over the field k of characteristic 0.

Keywords

Quiver / Admissible algebra / Differential operators / Cohomology

Cite this article

Download citation ▾
Fang Li, Dezhan Tan. On the first Hochschild cohomology of admissible algebras. Chinese Annals of Mathematics, Series B, 2015, 36(6): 1027-1042 DOI:10.1007/s11401-015-0919-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ames G., Cagliero L., Tirao P.. Comparison morphisms and the Hochschild cohomology ring of truncated quiver algebras. J. Algebra, 2009, 322: 1466-1497

[2]

Assem, I., Simson, D. and Skowronski, A., Elements of the Representation Theory of Associative Algebras Vol I: Techniques of Representation Theory, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.

[3]

Auslander M., Reiten I., Smalø S. O.. Representation Theory of Artin Algebra, 1995, Cambridge: Cambridge University Press

[4]

Bardzell M. J.. The alternating syzygy behavior of monomial algebras. J. Algebra, 1997, 188(1): 69-89

[5]

Bollobas, B., Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York, 1998.

[6]

Cibils C.. Rigidity of truncated quiver algebras. Adv. Math, 1990, 79: 18-42

[7]

Cibils C.. Rigid monomial algebras. Math. Ann, 1991, 289: 95-109

[8]

Crawley-Boevey, W. W., Lectures on Representations of Quivers. http://www1.maths.leeds.ac.uk/ ˜pmtwc/quivlecs.pdf

[9]

Gross J. L., Tucker T. W.. Topological Graph Theory, 1987, New York: John Wiley and Sons

[10]

Guo, L. and Li, F., Structure of Hochschild cohomology of path algebras and differential formulation of Euler’s polyhedron formula. arxiv:1010.1980v2

[11]

Happel D.. Hochschild cohomology of finite dimensional algebras. Lecture Notes in Math, 1989, 1404: 108-126

[12]

Locateli A. C.. Hochschild cohomology of truncated quiver algebras. Comm. Algebra, 1999, 27: 645-664

[13]

Pena J. A., Saorin M.. On the first Hochschild cohomology group of an algebra. Manscripta Math, 2001, 104: 431-442

[14]

Sanchez-Flores S.. The Lie module structure on the Hochschild cohomology groups of monomial algebras with radical square zero. J. Algebra, 2008, 320: 4249-4269

[15]

Sanchez-Flores S.. On the semisimplicity of the outer derivations of monomial algebras. Communications in Algebra, 2011, 39: 3410-3434

[16]

Sardanashvily, G., Differential operators on a Lie and graded Lie algebras. arxiv: 1004.0058v1[math-ph]

[17]

Strametz C.. The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra. J. Algebra Appl, 2006, 5(3): 245-270

[18]

Xu Y., Han Y., Jiang W.. Hochschild cohomology of truncated quiver algebras. Science in China, Series A: Mathematics, 2007, 50(5): 727-736

[19]

Zhang P.. Hochschild cohomology of truncated basic cycle. Science in China, Series A, 1997, 40(12): 1272-1278

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/