BSDEs with jumps and path-dependent parabolic integro-differential equations

Falei Wang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 625 -644.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 625 -644. DOI: 10.1007/s11401-015-0917-5
Article

BSDEs with jumps and path-dependent parabolic integro-differential equations

Author information +
History +
PDF

Abstract

This paper deals with backward stochastic differential equations with jumps, whose data (the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonlinear path-dependent parabolic integrodifferential equations, and then obtains a new type of nonlinear Feynman-Kac formula related to such BSDEs with jumps under some regularity conditions.

Keywords

Backward stochastic differential equations / Jump-diffusion processes / Itô integral and Itô calculus / Path-dependent parabolic integro-differential equations

Cite this article

Download citation ▾
Falei Wang. BSDEs with jumps and path-dependent parabolic integro-differential equations. Chinese Annals of Mathematics, Series B, 2015, 36(4): 625-644 DOI:10.1007/s11401-015-0917-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barles G., Buckdahn R., Pardoux E.. Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep., 1997, 60: 57-83

[2]

Bismut J. M.. Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl., 1973, 44: 384-404

[3]

Buckdahn, R. and Pardoux E., BSDEs with jumps and associated integro-partial differential equations, preprint.

[4]

Cont R., Fournié D. A.. Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal., 2010, 259(4): 1043-1072

[5]

Cont R., Fournié D. A.. A functional extension of the Itô formula. C. R. Math. Acad. Sci. Paris., 2010, 348(1): 57-61

[6]

Cont R., Fournie D. A.. Functional Ito calculus and stochastic integral representation of martingales. Ann. Probab., 2013, 41(1): 109-133

[7]

Dupire, B., Functional Itô calculus, Portfolio Research Paper 2009-04, Bloomberg.

[8]

Ekren I., Keller C., Touzi N., Zhang J.. On viscosity solutions of path dependent PDEs. Ann. Probab., 2014, 42(1): 204-236

[9]

Ekren, I., Touzi, N. and Zhang, J., Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. arXiv: 1210.0006

[10]

Ekren, I., Touzi, N. and Zhang, J., Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II. arXiv: 1210.0007

[11]

El Karoui N., Peng S., Quenez M. C.. Backward stochastic differential equation in finance. Math. Finance, 1997, 7(1): 1-71

[12]

Hu Y., Ma J.. Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients. Stochastic Process. Appl., 2004, 112(1): 23-51

[13]

Ma, J. and Yong, J., Forward-backward stochastic differential equations and their applications, Lecture Notes in Mathematics, 1702, Springer-Verlag, Berlin, 1999.

[14]

Ma J., Zhang J.. Representation theorems for backward SDEs. Ann. Appl. Probab., 2002, 12(4): 1390-1418

[15]

Ma J., Zhang J.. Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields., 2002, 122(2): 163-190

[16]

Pardoux E., Peng S.. Adapted solutions of backward stochastic equations. Systems Control Lett., 1990, 14: 55-61

[17]

Pardoux E., Peng S.. Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic Partial Differential Equations and Their Applications. Lect. Notes Control Inf. Sci., 1992, 176: 200-217

[18]

Peng S.. Probabilistic interpretation for systems of quasilinear parabolic partial differential equation. Stochastics Stochastics Rep., 1991, 37: 61-74

[19]

Peng S.. A nonlinear Feynman-Kac formula and applications, Control Theory, Stochastic Analysis and Applications (Hangzhou, 1991). World Sci. Publ., River Edge, NJ, 1992 173-184

[20]

Peng, S., Note on viscosity solution of path-dependent PDE and G-martingales. arXiv: 1106.1144

[21]

Peng, S. and Wang, F., BSDE, path-dependent PDE and nonlinear Feynman-Kac Formula. arXiv: 1108.4317

[22]

Tang S., Li X.. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim., 1994, 32(5): 1447-1475

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/