On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water

Shoufu Tian , Yufeng Zhang , Binlu Feng , Hongqing Zhang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 543 -560.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (4) : 543 -560. DOI: 10.1007/s11401-015-0908-6
Article

On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water

Author information +
History +
PDF

Abstract

By considering the one-dimensional model for describing long, small amplitude waves in shallow water, a generalized fifth-order evolution equation named the Olver water wave (OWW) equation is investigated by virtue of some new pseudo-potential systems. By introducing the corresponding pseudo-potential systems, the authors systematically construct some generalized symmetries that consider some new smooth functions {X } β=1,2,··· ,N i=1,2,··· ,n depending on a finite number of partial derivatives of the nonlocal variables v β and a restriction i.e., $\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial \xi ^i }}{{\partial v^\beta }}} \right) + \left( {\tfrac{{\partial \eta ^\alpha }}{{\partial v^\beta }}} \right)} \ne 0$ ≠ 0, i.e., $\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial G^\alpha }}{{\partial v^\beta }}} \right)} \ne 0$. Furthermore, the authors investigate some structures associated with the Olver water wave (AOWW) equations including Lie algebra and Darboux transformation. The results are also extended to AOWW equations such as Lax, Sawada-Kotera, Kaup-Kupershmidt, Itˆo and Caudrey-Dodd-Gibbon-Sawada-Kotera equations, et al. Finally, the symmetries are applied to investigate the initial value problems and Darboux transformations.

Keywords

Generalized symmetries / Darboux transformations / Analytical solutions

Cite this article

Download citation ▾
Shoufu Tian, Yufeng Zhang, Binlu Feng, Hongqing Zhang. On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water. Chinese Annals of Mathematics, Series B, 2015, 36(4): 543-560 DOI:10.1007/s11401-015-0908-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson I. M., Kamran N., Olver P. J.. Internal, external and generalized symmetries. Adv. Math., 1993, 100: 53-100

[2]

Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York, 1989.

[3]

Bluman G. W.. Temuerchaolu and Anco, S., New conservation laws obtained directly from symmetry action on a known conservation law. J. Math. Anal. Appl., 2006, 322: 233-250

[4]

Bluman G. W., Tian S. F., Yang Z. Z.. Nonclassical analysis of the nonlinear Kompaneets equation. J. Eng. Math., 2014, 84: 87-97

[5]

Chern S. S., Tenenblat K.. Pseudo-spherical surfaces and evolution equations. Stud. Appl. Math., 1986, 74(1): 55-83

[6]

Chen Y., Hu X. R.. Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation. Z. Naturforsch A., 2009, 62(a): 8-14

[7]

Dodd R. K., Gibbon J. D.. The prolongation structure of a higher order Korteweg-de Vries equation. Proc. R. Soc. Lond. A, 1978, 358: 287-296

[8]

Fan E. G.. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A: Math. Gen., 2002, 35: 6853-6872

[9]

Galas F.. New nonlocal symmetries with pseudopotentials. J. Phys. A: Math. Gen., 1992, 25: L981-L986

[10]

Guthrie G. A., Hickman M. S.. Nonlocal symmetries of the KdV equation. J. Math. Phys., 1993, 26: 193-205

[11]

Huang Q., Qu C. Z.. Symmetries and invariant solutions for the geometric heat flows. J. Phys. A: Math. Theor., 2007, 40: 9343-9360

[12]

Hernandez-Heredero R., Reyes E. G.. Nonlocal symmetries and a Darboux transformation for the Camassa-Holm equation. J. Phys. A: Math. Theor., 2009, 42: 182002

[13]

Ito M.. An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders. J. Phys. Soc., 1980, 49: 771-778

[14]

Ibragimov, N. H., CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1, CRC Press, Boca Raton, Florida, 1994.

[15]

Kaup D. J.. On the inverse scattering problem for cubic eigenvalue problems of the class Ψxxx +6QΨx + 6RΨ = *λΨ. Stud. Appl. Math., 1980, 62: 189-216

[16]

Kupershmidt B. A.. A super Korteweg-de Vries equation: An integrable system. Phys. Lett. A, 1984, 102: 213-215

[17]

Kudryashov N. A., Sukharev M. B.. Exact solutions of a non-linear fifth-order equation for describing waves on water. J. Appl. Math. Mech., 2001, 65: 855-865

[18]

Lax P. D.. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 1968, 21: 467-490

[19]

Levi D., Winternitz P.. Lie point symmetries and commuting flows for equations on lattices. J. Phys. A: Math. Gen., 2002, 35: 2249-2262

[20]

Lou S. Y.. A (2+1)-dimensional extension for the sine-Gordon equation. J. Phys. A: Math. Gen., 1993, 26: L789-L791

[21]

Lou S. Y., Hu X. B.. Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys., 1997, 38: 6401-6427

[22]

Noether E.. Invariante variations probleme. Nachr. Konig. Gesell. Wissen. Gottingen, Math. Phys. Kl., 1971, 1: 186-207

[23]

Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd edition, Springer-Verlag, New York, 1993.

[24]

Olver, P. J., Hamiltonian and non-Hamiltonian models for water waves, Lecture Notes in Physics, vol. 195, Springer-Verlag, New York, 1984.

[25]

Qu C. Z.. Potential symmetries to systems of nonlinear diffusion equations. J. Phys. A: Math. Theor., 2007, 40: 1757-1773

[26]

Qu C. Z., Zhang C. R.. Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method. J. Phys. A: Math. Theor., 2009, 42: 475201

[27]

Reyes E. G.. On nonlocal symmetries of some shallow water equations. J. Phys. A: Math. Theor., 2007, 40: 4467-4476

[28]

Reyes E. G.. Nonlocal symmetries and the Kaup-Kupershmidt equation. J. Math. Phys., 2005, 46: 073507

[29]

Sawada, K. and Kotera, K., A method for finding N-soliton solutions of the KdV and KdV-like equation, Prog. Theor. Phys., 51, 1974–1355.

[30]

Tian S. F., Zhang H. Q.. Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl., 2010, 371: 585-608

[31]

Tian S. F., Zhang H. Q.. Lax pair, binary Darboux transformation and new grammian solutions of nonisospectral Kadomtsev-Petviashvili equation with the two-singular-manifold method. J. Nonlinear Math. Phys., 2010, 17(4): 491-502

[32]

Tian S. F., Zhang H. Q.. A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Commun. Nonlinear Sci. Numer. Simulat., 2011, 16: 173-186

[33]

Tian S. F., Zhang H. Q.. Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation. Theor. Math. Phys., 2012, 170(3): 287-314

[34]

Tian S. F., Zhang H. Q.. On the integrability of a generalized variable-coefficient Kadomtsev- Petviashvili equation. J. Phys. A: Math. Theor., 2012, 45: 055203

[35]

Tian S. F., Zhang H. Q.. On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Stud. Appl. Math., 2014, 132: 212-246

[36]

Vinogradov A. M., Krasil’shchik I. S.. A method of calculation of higher symmetries of nonlinear evolution equations and nonlocal symmetries. Dokl. Akad. Nauk SSSR, 1980, 253: 1289-1293

[37]

Yan Z. Y.. The new tri-function method to multiple exact solutions of nonlinear wave equations. Phys. Scr., 2008, 78: 035001

[38]

Zhang S. L., Lou S. Y., Qu C. Z.. New variable separation approach: Application to nonlinear diffusion equations. J. Phys. A: Math. Gen., 2003, 36: 12223-12242

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/