Spherical scattered data quasi-interpolation by Gaussian radial basis function

Zhixiang Chen , Feilong Cao

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 401 -412.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 401 -412. DOI: 10.1007/s11401-015-0907-7
Article

Spherical scattered data quasi-interpolation by Gaussian radial basis function

Author information +
History +
PDF

Abstract

Since the spherical Gaussian radial function is strictly positive definite, the authors use the linear combinations of translations of the Gaussian kernel to interpolate the scattered data on spheres in this article. Seeing that target functions are usually outside the native spaces, and that one has to solve a large scaled system of linear equations to obtain combinatorial coefficients of interpolant functions, the authors first probe into some problems about interpolation with Gaussian radial functions. Then they construct quasi-interpolation operators by Gaussian radial function, and get the degrees of approximation. Moreover, they show the error relations between quasi-interpolation and interpolation when they have the same basis functions. Finally, the authors discuss the construction and approximation of the quasi-interpolant with a local support function.

Keywords

Scattered data / Approximation / Spherical Gaussian radial basis function / Modulus of continuity

Cite this article

Download citation ▾
Zhixiang Chen, Feilong Cao. Spherical scattered data quasi-interpolation by Gaussian radial basis function. Chinese Annals of Mathematics, Series B, 2015, 36(3): 401-412 DOI:10.1007/s11401-015-0907-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyd J P. Error saturation in Gaussian radial basis function functions on a finite interval. J. Comput. Applied Math., 2010, 234: 1435-1441

[2]

Boyd J P, Wang L. An analytic approximation to the cardinal functions of Gaussian radial basis functions on a one-dimensional infinite uniform lattice. Appl. Math. Comput., 2009, 215: 2215-2223

[3]

Buhmann M D. Radial Basis Functions: Theory and Implementations, 2003, Cambridge, UK: Cambridge University Press

[4]

Cao F L, Guo X F, Lin S B. L p error estimates for scattered data interpolation on spheres. Numerical Functional Analysis and Optimization, 2011, 32(12): 1205-1218

[5]

Cavoretto R, De Rossi A. Fast and accurate interpolation of large scattered data sets on the sphere. J. Comput. Appl. Math., 2010, 234: 1505-1521

[6]

Chen D, Menegatto V A, Sun X. A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 2003, 131: 2733-2740

[7]

Fasshauer G, Schumaker L L. Dælen M, Lyche T, Schumaker L L. Scattered data fitting on the sphere. Mathematical Methods for Curves and Surfaces II, 1998, Nashville: Vanderbilt University Press

[8]

Freeden W, Gervens T, Schreiner M. Constructive Approximation on the Sphere, 1998, New York: Oxford University Press

[9]

Jetter K, Stöckler J, Ward J. Error estimates for scattered data interpolation on spheres. Math. Comput., 1999, 68: 733-747

[10]

Kress R. Numerical Analysis, 1998, New York: Springer-Verlag

[11]

Kuang J C. Applied Inequalities, 2004, Jinan: Shandong Science and Technology Press

[12]

Le Gia Q T, Sloan I H, Wendland H. Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numerical Analysis, 2010, 48: 2065-2090

[13]

Le Gia Q T, Sloan I H, Wendland H. Multiscale analysis for functions in arbitrary Sobolev spaces by scaled radial basis functions on the unit sphere. Applied Computational Harmonic Analysis, 2012, 32: 401-412

[14]

Le Gia Q T, Tran T. An overlapping additive Schwarz preconditioner for interpolation on the unit sphere with spherical radial basis functions. J. Complexity, 2010, 26: 552-573

[15]

Levesley J, Sun X. Approximation in rough native spaces by shifts of smooth kernels on spheres. J. Approx. Theory, 2005, 133: 269-283

[16]

Levesley J, Sun X. Corrigendum to and two open questions arising from the article Approximation in rough native spaces by shifts of smooth kernels on spheres. J. Approx. Theory, 2006, 138: 124-127

[17]

Lorentz G G. Approximation of Functions, 1966

[18]

Maźya V, Schmidt G. Approximate Approximations, 2007, Providence: American Mathematical Society

[19]

Müller C. Spherical Harmonics, 1966, Berlin: Springer-Verlag

[20]

Müller F, Varnhorn W. Error estimates for approximate approximation with Gaussian kernels on compact intervals. J. Approx. Theory, 2007, 145: 171-181

[21]

Narcowich F J, Sun X, Ward J D. Approximation power of RBFs and their associated SBFs: A connection. Adv. Comput. Math., 2007, 27: 107-124

[22]

Narcowich F J, Sun X P, Ward J D, Wendland H. Direct and inverse sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math., 2007, 7: 369-390

[23]

Narcowich F J, Ward J D. Scattered data interpolation on spheres: Error estimates and locally supported basis function. SIAM J. Math. Anal., 2002, 33: 1393-1410

[24]

Schoenberg I J. Positive definite functions on spheres. Duke Math. J., 1942, 9: 96-108

[25]

Wang K Y, Li L Q. Harmonic Analysis and Approximation on the Unit Sphere, 2000, Beijing: Science Press

[26]

Wendland H. Scattered Data Approximation, 2005, Cambridge, UK: Cambridge University Press

[27]

Wendland H. Multiscale analysis in Sobolev spaces on bounded domain. Numerische Mathematik, 2010, 116: 493-517

[28]

Wu Z M. Models, Methods and Theory of Scattered Data Fitting, 2007, Beijing: Science Press

[29]

Xu Y, Cheney E W. Strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 1992, 116: 977-981

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/