PDF
Abstract
Let D be an integer at least 3 and let H(D, 2) denote the hypercube. It is known that H(D, 2) is a Q-polynomial distance-regular graph with diameter D, and its eigenvalue sequence and its dual eigenvalue sequence are all {D − 2i} i=0 D, Suppose that ⊠ denotes the tetrahedron algebra. In this paper, the authors display an action of ⊠ on the standard module V of H(D, 2). To describe this action, the authors define six matrices in Mat X(ℂ), called $A,A^* ,B,B^* ,K,K^* .$ Moreover, for each matrix above, the authors compute the transpose and then compute the transpose of each generator of ⊠ on V.
Keywords
Tetrahedron algebra
/
Hypercube
/
Distance-regular graph
/
Onsager algebra
Cite this article
Download citation ▾
Bo Hou, Suogang Gao.
Hypercube and tetrahedron algebra.
Chinese Annals of Mathematics, Series B, 2015, 36(2): 293-306 DOI:10.1007/s11401-015-0906-8
| [1] |
Bannai E, Itô T. Algebraic Combinatorics I: Association Schemes, 1984, London: Benjamin/Cummings
|
| [2] |
Biggs N. Algebraic Graph Theory, 1993, Cambridge: Cambridge University Press
|
| [3] |
Brouwer A E, Cohen A M, Neumaier A. Distance-Regular Graphs, 1989, Berlin: Springer-Verlag
|
| [4] |
Brouwer A E, Godsil C D, Koolen J H Width and dual width of subsets in polynomial association schemes. J. Combin. Theory, Ser. A, 2003, 102: 255-271
|
| [5] |
Caughman J S IV Spectra of bipartite P- and Q-polynomial association schemes. Graphs Combin., 1998, 14: 321-343
|
| [6] |
Caughman J S IV The Terwilliger algebras of bipartite P- and Q-polynomial association schemes. Discrete Math., 1999, 196: 65-95
|
| [7] |
Curtin B. 2-homogeneous bipartite distance-regular graphs. Discrete Math., 1998, 187: 39-70
|
| [8] |
Curtin B. Bipartite distance-regular graphs I. Graphs Combin., 1999, 15: 143-158
|
| [9] |
Curtin B. Bipartite distance-regular graphs II. Graphs Combin., 1999, 15: 377-391
|
| [10] |
Curtin B. Distance-regular graphs which support a spin model are thin. Discrete Math., 1999, 197/198: 205-216
|
| [11] |
Curtis C, Reiner I. Representation Theory of Finite Groups and Associative Algebras, 1962, New York: Interscience
|
| [12] |
Dickie G. Twice Q-polynomial distance-regular graphs are thin. European J. Combin., 1995, 16: 555-560
|
| [13] |
Dickie G, Terwilliger P. A note on thin P-polynomial and dual-thin Q-polynomial symmetric association schemes. J. Algebraic Combin., 1998, 7: 5-15
|
| [14] |
Egge E. A generalization of the Terwilliger algebra. J. Algebra, 2000, 233: 213-252
|
| [15] |
Elduque A. The S 4-action on the tetrahedron algebra. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2007, 137: 1227-1248
|
| [16] |
Go J T. The Terwilliger algebra of the hypercube. European J. Combin., 2002, 23: 399-429
|
| [17] |
Go J T, Terwilliger P. Tight distance-regular graphs and the subconstituent algebra. European J. Combin., 2002, 23: 793-816
|
| [18] |
Godsil C D. Algebraic Combinatorics, 1993, New York: Chapman and Hall Inc.
|
| [19] |
Harwig B. The tetrahedron algebra and its finite-dimensional irreducible modules. Linear Algebra Appl., 2007, 422: 219-235
|
| [20] |
Hartwig B, Terwilliger P. The tetrahedron algebra, the Onsager algebra, and the sl 2 loop algebra. J. Algebra, 2007, 308: 840-863
|
| [21] |
Hobart S A, Itô T. The structure of nonthin irreducible T-modules: Ladder bases and classical parameters. J. Algebraic Combin., 1998, 7: 53-75
|
| [22] |
Itô T, Terwilliger P. Finite-dimensional irreducible modules for the three-point sl 2 loop algebra. Comm. Algebra, 2008, 36: 4557-4598
|
| [23] |
Itô T, Terwilliger P. Distance regular graphs and the q-tetrahedron algebra. European J. Combin., 2009, 30: 682-697
|
| [24] |
Kim J. Some matrices associated with the split decomposition for a Q-polynomial distance-regular graph. European J. Combin., 2009, 30: 96-113
|
| [25] |
Kim J. A duality between pairs of split decompositions for a Q-polynomial distance-regular graph. Discrete Math., 2010, 310(12): 1828-1834
|
| [26] |
Pascasio A A. On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph. European J. Combin., 2002, 23: 1073-1078
|
| [27] |
Tanabe K. The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebraic Combin., 1997, 6: 173-195
|
| [28] |
Terwilliger P. The subconstituent algebra of an association scheme I. J. Algebraic Combin., 1992, 1: 363-388
|
| [29] |
Terwilliger P. The subconstituent algebra of an association scheme II. J. Algebraic Combin., 1993, 2: 73-103
|
| [30] |
Terwilliger P. The subconstituent algebra of an association scheme III. J. Algebraic Combin., 1993, 2: 177-210
|
| [31] |
Terwilliger P. The displacement and split decompositions for a Q-polynomial distance-regular graph. Graphs Combin., 2005, 21: 263-276
|