Conditional quantile estimation with truncated, censored and dependent data

Hanying Liang , Deli Li , Tianxuan Miao

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 969 -990.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (6) : 969 -990. DOI: 10.1007/s11401-015-0905-9
Article

Conditional quantile estimation with truncated, censored and dependent data

Author information +
History +
PDF

Abstract

This paper deals with the conditional quantile estimation based on left-truncated and right-censored data. Assuming that the observations with multivariate covariates form a stationary α-mixing sequence, the authors derive the strong convergence with rate, strong representation as well as asymptotic normality of the conditional quantile estimator. Also, a Berry-Esseen-type bound for the estimator is established. In addition, the finite sample behavior of the estimator is investigated via simulations.

Keywords

Berry-Esseen-type bound / Conditional quantile estimator / Strong representation / Truncated and censored data / α-mixing

Cite this article

Download citation ▾
Hanying Liang, Deli Li, Tianxuan Miao. Conditional quantile estimation with truncated, censored and dependent data. Chinese Annals of Mathematics, Series B, 2015, 36(6): 969-990 DOI:10.1007/s11401-015-0905-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akritas M. G., LaValley M. P.. A generalized product-limit estimator for truncated data. J. Nonparametric Statist, 2005, 17: 643-663

[2]

Beran R.. Nonparametric regression with randomly censored survival data, Technical Report, Department of Statistics, 1981, Berkeley: University of California

[3]

Cai T., Wei L. J., Wilcox M.. Semiparametric regression analysis for clustered survival data. Biometrika, 2000, 87: 867-878

[4]

Cai Z. W.. Regression quantiles for time series. Econometric Theory, 2002, 18: 169-192

[5]

Cai J., Kim J.. Nonparametric quantile estimation with correlated failure time data. Lifetime Data Analysis, 2003, 9: 357-371

[6]

Dabrowska D.. Nonparametric quantile regression with censored data. Sankhyā, Ser. A, 1992, 54: 252-259

[7]

Doukhan P.. Mixing: Properties and Examples, Lecture Notes in Statistics, 1994, Berlin: Springer-Verlag

[8]

Ferraty F., Rabhi A., Vieu P.. Conditional quantiles for dependent functional data with application to the climatic El Ni˜no phenomenon. Sankhyā, 2005, 67: 378-398

[9]

González-Manteiga W., Cadarso-Suárez Z.. Asymptotic properties of a generalized Kaplan-Meier estimator with some applications. J. Nonparametric Statist, 1994, 4: 65-78

[10]

Gürler Stute W., Wang J. L.. Weak and strong quantile representations for randomly truncated data with applications. Statist. Probab. Lett, 1993, 17: 139-148

[11]

Hall P., Heyde C. C.. Martingale Limit Theory and Its Application, 1980, New York: Academic Press

[12]

Honda T.. Nonparametric estimation of a conditional quantile for a-mixing processes. Ann. Inst. Statist. Math, 2000, 52: 459-470

[13]

Iglesias-Pérez C., González-Manteiga W.. Strong representation of a generalized product-limit estimator for truncated and censored data with some applications. J. Nonparametric Statist, 1999, 10: 213-244

[14]

Iglesias-Pérez C.. Strong representation of a conditional quantile function estimator with truncated and censored data. Statist. Probab. Lett, 2003, 65(2): 79-91

[15]

Kang S. S., Koehler K. J.. Modification of the Greenwood formula for correlated failure times. Biometrics, 1997, 53: 885-899

[16]

Lemdani M., Ould-Säid E., Poulin N.. Asymptotic properties of a conditional quantile estimator with randomly truncated data. J. Multivar. Analysis, 2009, 100: 546-559

[17]

Liang H. Y., Fan G. L.. Berry-Esseen-type bounds of estimators in a semiparametric model with linear process errors. J. Multivar. Analysis, 2009, 100: 1-15

[18]

Liang H. Y., de U˜na-Álvarez J.. Asymptotic properties of conditional quantile estimator for censored dependent observations. Ann. Inst. Statist. Math, 2011, 63: 267-289

[19]

Liang H. Y., de U˜na-Álvarez J.. Conditional quantile estimation with auxiliary information for lefttruncated and dependent data. J. Statist. Plan. Inference, 2011, 141: 3475-3488

[20]

Liang H. Y., de U˜na-Álvarez J., Iglesias-Pérez C.. Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data. Test, 2012, 21(4): 790-810

[21]

Lo S., Singh K.. The product-limit estimator and the bootstrap: Some asymptotic representations. Probab. Theory Related Fields, 1985, 71: 455-465

[22]

Michel R., Pfanzagl J.. The accuracy of the normal approximation for minimum constrast estimates. Z. Wahrsch. Verw. Gebiete, 1971, 18: 73-84

[23]

Ould-Säid E.. A strong uniform convergence rate of kernel conditional quantile estimator under random censorship. Statist. Probab. Lett, 2006, 76: 579-586

[24]

Ould-Säid E., Yahia D., Necir A.. A strong uniform convergence rate of a kernel conditional quantile estimator under random left-truncation and dependent data. Electronic J. Statist, 2009, 3: 426-445

[25]

Petrov V. V.. Limit Theorems of Probability Theory, 1995, New York: Oxford Univ. Press Inc.

[26]

Polonik W., Yao Q.. Set-indexed conditional empirical and quantile processes based on dependent data. J. Multivar. Analysis, 2002, 80: 234-255

[27]

Shao Q., Yu H.. Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab, 1996, 24: 2098-2127

[28]

Van Keilegom I., Veraverbeke N.. Bootstrapping quantiles in a fixed design regression model with censored data. J. Statist. Plan. Inference, 1998, 69: 115-131

[29]

Withers C. S.. Conditions for linear processes to be strong mixing. Z. Wahrsch. Verw. Gebiete, 1981, 57: 477-480

[30]

Yang S. C., Li Y. M.. Uniformly asymptotic normality of the regression weighted estimator for strong mixing samples. Acta Math. Sinica, 2006, 49(5): 1163-1170

[31]

Zhou X., Sun L. Q., Ren H.. Quantile estimation for left truncted and right censored data. Statist. Sinica, 2000, 10: 1217-1229

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/