Lie bialgebras of generalized loop Virasoro algebras

Henan Wu , Song Wang , Xiaoqing Yue

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 437 -446.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 437 -446. DOI: 10.1007/s11401-015-0904-x
Article

Lie bialgebras of generalized loop Virasoro algebras

Author information +
History +
PDF

Abstract

The first cohomology group of generalized loop Virasoro algebras with coefficients in the tensor product of its adjoint module is shown to be trivial. The result is used to prove that Lie bialgebra structures on generalized loop Virasoro algebras are coboundary triangular. The authors generalize the results to generalized map Virasoro algebras.

Keywords

Lie bialgebra / Yang-Baxter equation / Generalized loop Virasoro algebra / Generalized map Viarasoro algebra

Cite this article

Download citation ▾
Henan Wu, Song Wang, Xiaoqing Yue. Lie bialgebras of generalized loop Virasoro algebras. Chinese Annals of Mathematics, Series B, 2015, 36(3): 437-446 DOI:10.1007/s11401-015-0904-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison B, Azam S, Berman S Extended affine Lie algebras and their root systems. Mem. Amer. Math. Soc., 1997, 126(603): x+122

[2]

Dong C Y, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators, 1993, Boston: Birkhauser

[3]

Drinfeld V. Hamiltonian structures on Lie group, Lie algebras and the geometric meaning of classical Yang-Baxter equations. Soviet Math. Dokl, 1983, 27: 68-71

[4]

Drinfeld V. Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1–2, Berkeley, Calif. 1986, 1987, Providence, RI: A. M. S. 798-820

[5]

Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebras. J. Algebra, 1988, 118: 33-45

[6]

Kac V G. Infinite-Dimensional Lie Algebras, 1990, Cambridge: Cambridge University Press

[7]

Guo X Q, Lu R C, Zhao K M. Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra. Forum Math., 2011, 23: 1029-1052

[8]

Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J. Pure Appl. Algebra, 2000, 151: 67-88

[9]

Savage A. Classification of irreducible quasifinite modules over map Virasoro algebras. Transform. Groups, 2012, 17: 547-570

[10]

Song G A, Su Y C. Lie bialgebras of generalized Witt type. Science in China, Ser. A, 2006, 49: 533-544

[11]

Song, G. A. and Su, Y. C., Dual Lie bialgebras of Witt and Virasoro types, to appear. arXiv: 1306.0781

[12]

Su Y C. Harish-Chandra modules of intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J. Math. Phys., 1994, 35: 2013-2023

[13]

Su Y C. Classification of Harish-Chandra modules over the super-Virasoro algebras. Comm. Algebra, 1995, 23: 3653-3675

[14]

Su Y C. Simple modules over the higher rank super-Virasoro algebras. Lett. Math. Phys., 2000, 53: 263-272

[15]

Su Y C. Simple modules over the high rank Virasoro algebras. Comm. Algebra, 2001, 29: 2067-2080

[16]

Su Y C. Classification of Harish-Chandra modules over the higher rank Virasoro algebras. Comm. Math. Phys., 2003, 240: 539-551

[17]

Su Y C, Wu H N, Wang S, Yue X Q. Structures of generalized map Virasoro algebras. Symmetries and Groups in Contemporary Physics, 2013, Singapore: World Scientific 505-510

[18]

Su Y C, Xu X P, Zhang H C. Derivation-simple algebras and the structures of Lie algebras of Witt type. J. Algebra, 2000, 233: 642-662

[19]

Su Y C, Zhao K M. Second cohomology group of generalized Witt type Lie algebras and certain representations. Comm. Algebra, 2002, 30: 3285-3309

[20]

Taft E J. Witt and Virasoro algebras as Lie bialgebras. J. Pure Appl. Algebra, 1993, 87: 301-312

[21]

Wu H N, Wang S, Yue X Q. Structures of generalized loop Virasoro algebras. Comm. Algebra, 2014, 42: 1545-1558

[22]

Yue X Q, Su Y C. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm. Algebra, 2008, 36: 1537-1549

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/