Superderivation algebras of modular Lie superalgebras of O-type

Xiaoning Xu , Xiaojun Li

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 447 -466.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (3) : 447 -466. DOI: 10.1007/s11401-015-0902-z
Article

Superderivation algebras of modular Lie superalgebras of O-type

Author information +
History +
PDF

Abstract

The authors consider a family of finite-dimensional Lie superalgebras of O-type over an algebraically closed field of characteristic p > 3. It is proved that the Lie superalgebras of O-type are simple and the spanning sets are determined. Then the spanning sets are employed to characterize the superderivation algebras of these Lie superalgebras. Finally, the associative forms are discussed and a comparison is made between these Lie superalgebras and other simple Lie superalgebras of Cartan type.

Keywords

Modular Lie superalgebras / ℤ-graded Lie superalgebras / Superderivation algebras

Cite this article

Download citation ▾
Xiaoning Xu, Xiaojun Li. Superderivation algebras of modular Lie superalgebras of O-type. Chinese Annals of Mathematics, Series B, 2015, 36(3): 447-466 DOI:10.1007/s11401-015-0902-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bouarroudj S, Grozman P, Leites D. Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix. SIGMA, 2009, 5: 1-63

[2]

Celousov M J. Derivation of Lie algebras of Cartan-type (in Russian). Izv. Vyssh. Uchebn. Zaved. Mat., 1970, 98: 126-134

[3]

Chen Y, Liu W D. Finite-dimensional odd contact superalgebras over a field of prime characteristic. J. Lie Theory, 2011, 21(3): 729-754

[4]

Elduque A. Models of some simple modular Lie superalgebras. Pacific J. Math., 2009, 240: 49-83

[5]

Elduque A. Some new simple modular Lie superalgebras. Pacific J. Math., 2007, 231: 337-359

[6]

Fu J Y, Zhang Q C, Jiang C P. The Cartan-type modular Lie superalgebra KO. Comm. Algebra, 2006, 34(1): 107-128

[7]

Guan B L, Chen L Y. Derivations of the even part of contact Lie superalgebra. J. Pure Appl. Algebra, 2012, 216: 1454-1466

[8]

Kac V G. Lie superalgebras. Adv. Math., 1977, 26: 8-96

[9]

Kac V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math., 1998, 139: 1-55

[10]

Leites D. Towards classification of simple finite dimensional modular Lie superalgebras. J. Prime Res. Math., 2007, 3: 101-110

[11]

Liu W D, He Y H. Finite-dimensional special odd Hamiltonian superalgebras in prime characteristic. Comm. Contemporary Math., 2009, 11(4): 523-546

[12]

Liu W D, Yuan J X. Special odd Lie superalgebras in prime characteristic. Science China Math., 2012, 55(3): 567-576

[13]

Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO. J. Algebra, 2004, 273: 176-205

[14]

Liu W D, Zhang Y Z. Automorphism groups of restricted Cartan-type Lie superalgebra. Comm. Algebra, 2006, 34(1): 3767-3784

[15]

Petrogradski V M. Identities in the enveloping algebras of modular Lie superalgebras. J. Algebra, 1992, 145: 1-21

[16]

Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations, 1988, New York: Dekker

[17]

Tang L M, Liu W D. Automorphism groups of finite-dimensional special odd Hamiltonian superalgebras in prime characteristic. Front. Math. China, 2012, 7(5): 907-918

[18]

Wang W Q, Zhao L. Representations of Lie superalgebras in prime characteristic. Proc. Lond. Math. Soc., 2009, 99: 145-167

[19]

Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm. Algebra, 2004, 32: 4117-4131

[20]

Yuan J X, Liu W D, Bai W. Associative forms and second cohomologies of Lie superalgebras HO and KO. J. Lie Theory, 2013, 23: 203-215

[21]

Zhang C W. On the simple modules for the restricted Lie superalgebra sl(n|1). J. Pure Appl. Algebra, 2009, 213: 756-765

[22]

Zhang Y Z. Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull, 1997, 42(9): 720-724

[23]

Zhang Y Z, Liu W D. Modular Lie Superalgebras (in Chinese), 2004, Beijing: Science Press

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/