Embedding periodic maps on surfaces into those on S 3

Yu Guo , Chao Wang , Shicheng Wang , Yimu Zhang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 161 -180.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 161 -180. DOI: 10.1007/s11401-015-0890-z
Article

Embedding periodic maps on surfaces into those on S 3

Author information +
History +
PDF

Abstract

Call a periodic map h on the closed orientable surface Σ g extendable if h extends to a periodic map over the pair (S 3 g) for possible embeddings e: Σ gS 3. The authors determine the extendabilities for all periodical maps on Σ2. The results involve various orientation preserving/reversing behalves of the periodical maps on the pair (S 3 g). To do this the authors first list all periodic maps on Σ2, and indeed the authors exhibit each of them as a composition of primary and explicit symmetries, like rotations, reflections and antipodal maps, which itself should be interesting. A by-product is that for each even g, the maximum order periodic map on Σ g is extendable, which contrasts sharply with the situation in the orientation preserving category.

Keywords

Symmetry of surface / Symmetry of 3-sphere / Extendable action

Cite this article

Download citation ▾
Yu Guo, Chao Wang, Shicheng Wang, Yimu Zhang. Embedding periodic maps on surfaces into those on S 3. Chinese Annals of Mathematics, Series B, 2015, 36(2): 161-180 DOI:10.1007/s11401-015-0890-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boileau M, Maillot S, Porti J. Three-Dimensional Orbifolds and Their Geometric Structures, 2003, Paris: Société Mathématique de France

[2]

Boileau, M. and Porti, J., Geometrization of 3-orbifolds of cyclic type, Astérisque, 272, 2001, 208 pages.

[3]

Eilenberg S. Topologie du plan. Fundamenta Mathematicae, 1936, 26: 61-112

[4]

Livesay G R. Involutions with two fixed points on the three-sphere. Ann. Math., 1963, 78(2): 582-593

[5]

McCullough D, Miller A, Zimmermann B. Group actions on handlebodies. Proc. London Math. Soc., 1989, 59(3): 373-416

[6]

Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159.

[7]

Perelman, G., Ricci flow with surgery on three-manifolds, arXiv: math.DG/0303109.

[8]

Perelman, G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv: math.DG/0307245.

[9]

Smith P A. New results and old problems in finite transformation groups. Bull. AMS, 1960, 66: 401-415

[10]

Steiger F. Maximalen ordnungen periodischer topologischer Abbildungen geschlossener Flachen in sich. Comment. Math. Helv., 1935, 8: 48-69

[11]

Thurston W P. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 1982, 316: 357-381

[12]

Wang S C. Maximum orders of periodic maps on closed surfaces. Topology Appl., 1991, 41(3): 255-262

[13]

Wang C, Wang S C, Zhang Y M Extending finite group actions on surfaces over S 3. Topology Appl., 2013, 160(16): 2088-2103

[14]

Wang, C., Wang, S. C., Zhang, Y. M., et al., Maximal orders of extendable finite group actions on surfaces, Group, Geometries and Dynamics, arXiv: 1209.1170.

[15]

Zieschang H, Vogt E, Coldewey H. Surfaces and Planar Discontinuous Groups, 1980, Berlin, New York: Springer-Verlag

[16]

Zimmermann B. Uber homomorphismen n-dimensionaler Henkelkrper und endliche Erweiterungen von Schottky-Gruppen. Comment. Math. Helv., 1981, 56: 474-486

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/