Sharp inequalities for BMO functions
Adam Oscȩkowski
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 225 -236.
Sharp inequalities for BMO functions
The purpose of the paper is to study sharp weak-type bounds for functions of bounded mean oscillation. Let 0 < p < ∞ be a fixed number and let I be an interval contained in ℝ. The author shows that for any φ: I → ℝ and any subset E ⊂ I of positive measure, $\begin{array}{*{20}c} {\frac{{\left| I \right|^{ - \tfrac{1}{p}} }}{{\left| E \right|^{1 - \tfrac{1}{p}} }}\int_E {\left| {\phi - \frac{1}{{\left| I \right|}}\int_I {\phi dy} } \right|dx \leqslant \left\| \phi \right\|_{BMO(I)} , 0 < p \leqslant 2,} } \\ {\frac{{\left| I \right|^{ - \tfrac{1}{p}} }}{{\left| E \right|^{1 - \tfrac{1}{p}} }}\int_E {\left| {\phi - \frac{1}{{\left| I \right|}}\int_I {\phi dy} } \right|dx \leqslant \frac{p}{{2^{\tfrac{2}{p}} }}e^{\tfrac{2}{p} - 1} \left\| \phi \right\|_{BMO(I)} , p \geqslant 2.} } \\ \end{array}$ For each p, the constant on the right-hand side is the best possible. The proof rests on the explicit evaluation of the associated Bellman function. The result is a complement of the earlier works of Slavin, Vasyunin and Volberg concerning weak-type, L p and exponential bounds for the BMO class.
BMO / Bellman function / Weak-type inequality / Best constants
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
Ivanishvili, P., Osipov, N., Stolyarov, D., et al., Bellman functions for the extremal problems on BMO (in Russian), http://www.pdmi.ras.ru/preprint/2011/rus-2011.html. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Vasyunin, V., The sharp constant in John-Nirenberg inequality, http://www.pdmi.ras.ru/preprint/2003/index.html. |
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |