Moments of L-functions attached to the twist of modular form by Dirichlet characters

Guanghua Ji , Haiwei Sun

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 237 -252.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 237 -252. DOI: 10.1007/s11401-015-0886-8
Article

Moments of L-functions attached to the twist of modular form by Dirichlet characters

Author information +
History +
PDF

Abstract

Let f(z) be a holomorphic cusp form of weight κ with respect to the full modular group SL 2(ℤ). Let L(s, f) be the automorphic L-function associated with f(z) and χ be a Dirichlet character modulo q. In this paper, the authors prove that unconditionally for $k = \tfrac{1}{n}$ with n ∈ ℕ, $M_k \left( {q,f} \right) = \sum\limits_{\begin{array}{*{20}c} {\chi (\bmod q)} \\ {\chi \ne \chi _0 } \\ \end{array} } {\left| {L\left( {\frac{1}{2},f \otimes \chi } \right)} \right|^{2k} < < _k \varphi \left( q \right)(\log q)^{k^2 } ,}$ and the result also holds for any real number 0 < k < 1 under the GRH for L(s, f ⊗ χ). The authors also prove that under the GRH for L(s, f ⊗ χ), $M_k \left( {q,f} \right) > > _k \varphi (q)(log q)^{k^2 }$ for any real number k > 0 and any large prime q.

Keywords

Moments / Automorphic L-functions / Convexity theorem

Cite this article

Download citation ▾
Guanghua Ji, Haiwei Sun. Moments of L-functions attached to the twist of modular form by Dirichlet characters. Chinese Annals of Mathematics, Series B, 2015, 36(2): 237-252 DOI:10.1007/s11401-015-0886-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conrey J B, Farmer D, Keating J Integral moments of L-functions. Proc. London Math. Soc., 2005, 91: 33-104

[2]

Deligne P. La conjecture de Weil. Inst. Hautes Etudes Sci. Pul. Math., 1974, 43: 29-39

[3]

Diaconu A, Goldfeld D, Hoffstein J. Multiple Dirichlet series and moments of zeta and L-functions. Compositio Math., 2003, 139: 297-360

[4]

Gabriel R M. Some results concerning the integrals of modudi of regular functions along certain curves. J. London Math. Soc., 1927, 2: 112-117

[5]

Heath-Brown D R. Fractional moments of the Riemann zeta-function. J. London Math. Soc., 1981, 24(2): 65-78

[6]

Heath-Brown D R. Fractional moments of Dirichlet L-funtions. Acta Arith., 2010, 145: 397-409

[7]

Iwaniec H, Kowalski E. Analytic Number Theory, 2004, Providence, RI: Amer. Math. Soc.

[8]

Ji G H. Lower bounds for moments of automorphic L-functions over short intervals. Proc. Amer. Math. Soc., 2009, 137: 3569-3574

[9]

Kamiya Y. Zero density estimates of L-functions associated with cusp forms. Acta Arith., 1998, 85: 209-227

[10]

Keating J P, Snaith N C. Random matrix theory and L-functions at s = 1/2. Comn. in Math. Phys., 2000, 214: 91-100

[11]

Liu J Y, Ye Y B. Selbergs orthogonality conjecture for automorphic L-functions. Amer. J. Math., 2005, 127: 837-849

[12]

Montgomery H L. Topics in Multiplicative Number Theory, 1971, Berlin, New York: Springer-Verlag

[13]

Pi Q H. Fractional moments of automorphic L-functions on Gl(m). Chin. Ann. Math., 2011, 32B(4): 631-642

[14]

Rudnick Z, Sarnak P. Zeros of principal L-functions and Random matrix theory. Duke Math. J., 1996, 81: 269-322

[15]

Rudnick Z, Soundararajan K. Lower bounds for moments of L-functions. Proc. Natl. Acad. Sci., 2005, 102: 6837-6838

[16]

Rudnick Z, Soundararajan K. Lower Bounds for Moments of L-Functions: Symplectic and Orthogonal Examples, 2006, Providence, RI: Amer. Math. Soc.

[17]

Soundararajan K, Young M P. The second moment of quadratic twists of modular L-functions. J. Euro. Math. Soc., 2010, 12(5): 1097-1116

[18]

Wirsing E. Das asymptotische verhalten von summen über multiplikative funktionen II. Acta Math. Acad. Sci. Hungar., 1967, 18: 411-467

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/