The uniqueness of inverse problem for the Dirac operators with partial information

Zhaoying Wei , Guangsheng Wei

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 253 -266.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 253 -266. DOI: 10.1007/s11401-015-0885-9
Article

The uniqueness of inverse problem for the Dirac operators with partial information

Author information +
History +
PDF

Abstract

The inverse spectral problem for the Dirac operators defined on the interval [0, π] with self-adjoint separated boundary conditions is considered. Some uniqueness results are obtained, which imply that the pair of potentials (p(x), r(x)) and a boundary condition are uniquely determined even if only partial information is given on (p(x), r(x)) together with partial information on the spectral data, consisting of either one full spectrum and a subset of norming constants, or a subset of pairs of eigenvalues and the corresponding norming constants. Moreover, the authors are also concerned with the situation where both p(x) and r(x) are C n-smoothness at some given point.

Keywords

Eigenvalue / Norming constant / Boundary condition / Inverse spectral problem

Cite this article

Download citation ▾
Zhaoying Wei, Guangsheng Wei. The uniqueness of inverse problem for the Dirac operators with partial information. Chinese Annals of Mathematics, Series B, 2015, 36(2): 253-266 DOI:10.1007/s11401-015-0885-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Levitan B M, Sargsjan I S. Sturm-Liouville and Dirac operators, 1988, Moscow: Nauka

[2]

Horváth M. On the inverse spectral theory of Schrödinger and Dirac operators. Amer. Math. Soc. Transl., 2001, 353(10): 4155-4171

[3]

Amour L. Extension on isospectral sets for AKNS system. Inverse problem, 1996, 12(2): 115-120

[4]

Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM J. Appl. Math., 1978, 34(4): 676-680

[5]

Delrio R, Grébert B. Inverse spectral results for AKNS systems with partial information on the potentials. Math. Phys. Anal. Geom., 2001, 4(3): 229-244

[6]

Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans. Amer. Math. Soc., 2000, 352(6): 2765-2787

[7]

Wei G S, Xu H K. Inverse spectral problem with partial information given on the potential and norming constants. Amer. Math. Soc. Transl., 2012, 364(6): 3266-3288

[8]

Marchenko V A. Some questions in the theory of one-dimensional linear differential operators of the second order. Trudy Moskov. Mat. Obshch., 1952, 1: 327-420

[9]

Marchenko V A. Sturm-Liouville Operators and Applications, 1986, Basel: Birkhauser

[10]

Clark S, Gesztesy F. Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators. Trans. Amer. Math. Soc., 2002, 354(9): 3475-3534

[11]

Del Rio R, Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions. Internat. Math. Res. Notices, 1997, 15: 751-758

[12]

Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum. Helv. Phys. Acta, 1997, 70: 66-71

[13]

Levitan B M, Sargsjan I S. Introduction to spectral theory: Selfadjoint ordinary differential operators, 1975 25-34

[14]

Danielyan A A, Levitan B M, Khasanov A B. Asymptotic behavior of Weyl-Titchmarsh m function in the case of the Dirac system, Moscow Institute of Electromechanical Engineering. Translated from Matematicheskie Zametki, 1991, 50(2): 77-88

[15]

Levinson N. Gap and Density Theorems, 1940, New York: Amer. Math. Soc.

[16]

Levin B J. Distribution of zeros of entire functions, 1956, Moscow: Gosudarstv. Izdat. Tehn.-Teor. Lit.

[17]

Conway J B. Functions of One Complex Variable, 1995 2nd ed. New York: Springer-Verlag

[18]

Gasymov M G, Džabiev T T. Solution of the inverse problem by two spectra for the Dirac equation on a finite interval. Akad. Nauk Azerbaĭdžan. SSR Dokl., 1966, 22(7): 3-6

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/