Derivations of the even part of finite-dimensional simple modular Lie superalgebra $\mathcal{M}$

Lili Ma , Liangyun Chen

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 279 -292.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (2) : 279 -292. DOI: 10.1007/s11401-015-0883-y
Article

Derivations of the even part of finite-dimensional simple modular Lie superalgebra $\mathcal{M}$

Author information +
History +
PDF

Abstract

Let $\mathbb{F}$ be the underlying base field of characteristic p > 3 and denote by $\mathfrak{M}$ the even part of the finite-dimensional simple modular Lie superalgebra $\mathcal{M}$. In this paper, the generator sets of the Lie algebra $\mathfrak{M}$ which will be heavily used to consider the derivation algebra $Der\left( \mathfrak{M} \right)$ are given. Furthermore, the derivation algebra of $\mathfrak{M}$ is determined by reducing derivations and a torus of $\mathfrak{M}$, i.e., $Der(\mathfrak{M}) = ad(\mathfrak{M}) \oplus span_\mathbb{F} \left\{ {\prod\limits_l {ad(\xi _{r + 1} \xi _l )} } \right\} \oplus span_\mathbb{F} \left\{ {adx_{i'} ad\left( {x_i \xi ^v } \right)\prod\limits_l {ad(\xi _{r + 1} \xi _l )} } \right\}.$. As a result, the derivation algebra of the even part of M does not equal the even part of the derivation superalgebra of M.

Keywords

Modular Lie superalgebra / Derivation algebra / Generator sets

Cite this article

Download citation ▾
Lili Ma, Liangyun Chen. Derivations of the even part of finite-dimensional simple modular Lie superalgebra $\mathcal{M}$. Chinese Annals of Mathematics, Series B, 2015, 36(2): 279-292 DOI:10.1007/s11401-015-0883-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Celousov M J. Derivations of Lie algebras of Cartan-type (in Russian). Izv. Vyss. Uchebn. Zaved. Math., 1970, 98(7): 126-134

[2]

Eldugue A. Lie superalgebras with semisimple even part. J. Algebra, 1996, 183: 649-663

[3]

Kac V G. Classification of infinite-dimensional simple linearly compact Lie super-algebras. Adv. Math., 1998, 139(1): 1-55

[4]

Kac V G. Lie superalgebras. Adv. Math., 1977, 26(1): 8-96

[5]

Kochetkov Y, Leites D. Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group. Contemp. Math., 1992, 131: 59-67

[6]

Liu W D, Zhang Y Z. Derivations of the even parts for modular Lie superalgebras of Cartan type W and S. Internat. J. Algebra Comput., 2007, 17(4): 661-714

[7]

Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO. J. Algebra, 2004, 273: 176-205

[8]

Ma F M, Zhang Q C. Derivation algebra of modular Lie superalgebra K of Cartan-type. J. Math. (PRC), 2000, 20(4): 431-435

[9]

Ma L L, Chen L Y, Zhang Y Z. Finite-dimensional simple modular Lie superalgebra M. Front. Math. China, 2013, 8(2): 411-441

[10]

Strade H, Farnsteiner R. Modular Lie algebras and their representations, 1988, New York: Marcel Dekker Inc.

[11]

Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm. Algebra, 2004, 32(10): 4117-4131

[12]

Wei Z, Zhang Y Z. Derivations for even part of finite-dimensional modular Lie superalgebra $\tilde \Omega$. Front. Math. China, 2012, 7(6): 1169-1194

[13]

Xu X N, Zhang Y Z, Chen L Y. The finite-dimensional modular Lie superalgebra Γ. Algebra Colloq., 2010, 17(3): 525-540

[14]

Zhang Q C, Zhang Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan-type. Acta Math. Sci., 2000, 20(1): 137-144

[15]

Zhang Y Z, Fu H C. Finite dimensional Hamiltonian Lie superalgebras. Comm. Algebra, 2002, 30(6): 2651-2673

[16]

Zhang Y Z, Liu W D. Modular Lie Superalgebras (in Chinese), 2004, Beijing: Science Press

[17]

Zhang Y Z, Zhang Q C. Finite-dimensional modular Lie superalgebra Ω. J. Algebra, 2009, 321: 3601-3619

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/