Symmetric q-deformed KP hierarchy

Kelei Tian , Jingsong He , Yucai Su

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 1 -10.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 1 -10. DOI: 10.1007/s11401-014-0881-5
Article

Symmetric q-deformed KP hierarchy

Author information +
History +
PDF

Abstract

Based on the analytic property of the symmetric q-exponent e q(x), a new symmetric q-deformed Kadomtsev-Petviashvili (q-KP for short) hierarchy associated with the symmetric q-derivative operator q is constructed. Furthermore, the symmetric q-CKP hierarchy and symmetric q-BKP hierarchy are defined. The authors also investigate the additional symmetries of the symmetric q-KP hierarchy.

Keywords

q-Derivative / Symmetric q-KP hierarchy / Additional symmetries

Cite this article

Download citation ▾
Kelei Tian, Jingsong He, Yucai Su. Symmetric q-deformed KP hierarchy. Chinese Annals of Mathematics, Series B, 2015, 36(1): 1-10 DOI:10.1007/s11401-014-0881-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Klimyk A, Schmüdgen K. Quantum Groups and Their Represntaions, 1997, Berlin: Springer-Verlag

[2]

Kac V, Cheung P. Quantum Calculus, 2002, New York: Springer-Verlag

[3]

Frenkel E. Deformations of the KdV hierarchy and related soliton equations. Int. Math. Res. Not., 1996, 2: 55-76

[4]

Zhang D H. Quantum deformation of KdV hierarchies and their infinitely many conservation laws. J. Phys. A, 1993, 26: 2389-2407

[5]

Wu Z Y, Zhang D H, Zheng Q R. Quantum deformation of KdV hierarchies and their exact solutions: q-Deformed solitons. J. Phys. A, 1994, 27: 5307-5312

[6]

Khesin B, Lyubashenko V, Roger C. Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle. J. Funct. Anal., 1997, 143: 55-97

[7]

Tsuboi Z, Kuniba A. Solutions of a discretized Toda field equation for D r from analytic Bethe ansatz. J. Phys. A, 1996, 29: 7785-7796

[8]

Iliev P. q-KP hierarchy, bispectrality and Calogero-Moser systems. J. Geom. Phys., 2000, 35: 157-182

[9]

Mas J, Seco M. The algebra of q-pseudodifferential symbols and the q-W KP (n) algebra. J. Math. Phys., 1996, 37: 6510-6529

[10]

Iliev P. Solutions to Frenkel’s deformation of the KP hierarchy. J. Phys. A, 1998, 31: 241-244

[11]

Iliev P. Tau function solutions to a q-deformation of the KP hierarchy. Lett. Math. Phys., 1998, 44: 187-200

[12]

Tu M H. q-Deformed KP hierarchy: Its additional symmetries and infinitesimal Bäcklund transformations. Lett. Math. Phys., 1999, 49: 95-103

[13]

He, J. S., Li, Y. H. and Cheng, Y., q-Deformed KP hierarchy and q-Deformed constrained KP hierarchy, Symmetry Integrability Geom. Methods Appl., 2, 2006, 32 pages.

[14]

Tian K L, He J S, Su Y C, Cheng Y. String equations of the q-KP hierarchy. Chin. Ann. Math., 2011, 32B(6): 895-904

[15]

Tian K L, He J S, Cheng Y. Virasoro and W-constraints for the q-KP hierarchy. AIP Conf. Proc., 2010, 1212: 35-42

[16]

Lin R L, Liu X J, Zeng Y B. A new extended q-deformed KP hierarchy. J. Nonl. Math. Phys., 2008, 15: 333-347

[17]

Lin R L, Peng H, Manas M. The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons. J. Phys. A, 2010, 43: 434022

[18]

Date E, Kashiwara M, Jimbo M, Miwa T. KP hierarchy of orthogonal symplectic type. J. Phys. Soc. Japan, 1981, 50: 3813-3818

[19]

Date, E., Kashiwara, M., Jimbo, M. and Miwa, T., Transformation Groups for Soliton Equations, Nonlinear Integrable Systems-Classical and Quantum Theory, Jimbo M. and Miwa T. (eds.), World Scientific, Singapore, 1983, 39–119.

[20]

Dickey L A. Soliton Equations and Hamiltonian Systems, 2003 2nd ed. Singapore: World Scintific

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/