Finite p-groups all of whose maximal subgroups either are metacyclic or have a derived subgroup of order ≤ p

Lihua Zhang , Yanming Xia , Qinhai Zhang

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 11 -30.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 11 -30. DOI: 10.1007/s11401-014-0880-6
Article

Finite p-groups all of whose maximal subgroups either are metacyclic or have a derived subgroup of order ≤ p

Author information +
History +
PDF

Abstract

The groups as mentioned in the title are classified up to isomorphism. This is an answer to a question proposed by Berkovich and Janko.

Keywords

Finite p-groups / Nonmetacyclic p-groups / Minimal nonabelian p-groups / Maximal subgroups

Cite this article

Download citation ▾
Lihua Zhang, Yanming Xia, Qinhai Zhang. Finite p-groups all of whose maximal subgroups either are metacyclic or have a derived subgroup of order ≤ p. Chinese Annals of Mathematics, Series B, 2015, 36(1): 11-30 DOI:10.1007/s11401-014-0880-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berkovich Y. Groups of Prime Power Order, Vol. 1, 2008, Berlin, New York: Walter de Gruyter

[2]

Berkovich Y, Janko Z. Groups of Prime Power Order, Vol. 2, 2008, Berlin, New York: Walter de Gruyter

[3]

Berkovich Y, Janko Z. Groups of Prime Power Order, Vol. 3, 2011, Berlin, New York: Walter de Gruyter

[4]

Rédei L. Das schiefe produkt in der Gruppentheorie. Comment. Math. Helvet, 1947, 20: 225-267

[5]

Zhang J Q, Li X H. Finite p-groups all of whose proper subgroups have small derived subgoups. Sci. China Ser. A, 2010, 53: 1357-1362

[6]

Blackburn N. Generalizations of certain elementary theorems on p-groups. Proc. London Math. Soc., 1961, 11(3): 1-22

[7]

Newman M F, Xu M Y. Metacyclic groups of prime power oder. Chin. Adv. Math., 1988, 17: 106-107

[8]

Xu M Y, Zhang Q H. A classification of metacyclic 2-groups. Algebra Colloq., 2006, 13(1): 25-34

[9]

Xu M Y, Qu H P. Finite p-Groups (in Chinese), 2010, Beijing: Beijing University Press

[10]

Xu M Y, An L J, Zhang Q H. Finite p-groups all of whose non-abelian proper subgroups are generated by two elements. J. Algebra, 2008, 319: 3603-3620

[11]

Xu M Y. An Introduction to Finite Groups I (in Chinese), 1999 2nd edition Beijing: Scientific Press

[12]

Zhang Q H, Song Q W, Xu M Y. The classification of some regular p-groups and its applications. Sci. China Ser. A, 2006, 49(3): 366-386

[13]

An L J, Li L L, Qu H P, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (II). Sci. China Ser. A, 2014, 57(4): 737-753

[14]

Li L L, Qu H P, Chen G Y. Central extension of inner abelian p-groups (I). Acta Math. Sinica, Chinese Series, 2010, 53(4): 675-684

[15]

Janko Z. Finite 2-groups with exactly one nonmetacyclic maximal subgroup. Israel J. Math., 2008, 166: 313-347

[16]

An, L. J., Hu, R. F. and Zhang, Q. H., Finite p-groups with a minimal non-abelian subgroup of index p (IV), J. Algebra Appl., to appear.

[17]

Qu, H. P., Xu, M. Y. and An, L. J., Finite p-groups with a minimal non-abelian subgroup of index p (III), Sci. China Ser. A, to appear.

[18]

Berkovich Y. On subgroups of finite p-groups. J. Algebra, 2000, 224: 198-240

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/