Eigenvalue comparison theorems on Finsler manifolds

Songting Yin , Qun He

Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 31 -44.

PDF
Chinese Annals of Mathematics, Series B ›› 2015, Vol. 36 ›› Issue (1) : 31 -44. DOI: 10.1007/s11401-014-0879-z
Article

Eigenvalue comparison theorems on Finsler manifolds

Author information +
History +
PDF

Abstract

Cheng-type inequality, Cheeger-type inequality and Faber-Krahn-type inequality are generalized to Finsler manifolds. For a compact Finsler manifold with the weighted Ricci curvature bounded from below by a negative constant, Li-Yau’s estimation of the first eigenvalue is also given.

Keywords

The first eigenvalue / Finsler-Laplacian / Ricci curvature / S-Curvature

Cite this article

Download citation ▾
Songting Yin, Qun He. Eigenvalue comparison theorems on Finsler manifolds. Chinese Annals of Mathematics, Series B, 2015, 36(1): 31-44 DOI:10.1007/s11401-014-0879-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bácsó S, Cheng X Y, Shen Z M. Curvature properties of (α, β)-metric. Advanced Studies in Pure Mathematics, 2007, 48: 73-110

[2]

Bao D W, Chern S S, Shen Z M. An Introduction to Riemann-Finsler Geometry, 2000, New York, Berlin, Heidelberg: Springer-Verlag

[3]

Cheeger J. A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, A Symposium in Honor of S. Bochner, 1970, Princeton: Princeton University Press 195-199

[4]

Chen B. Some geometric and analysis problems in Finsler geometry, Report of Postdoctoral Research, 2010, Hangzhou: Zhejiang University

[5]

Cheng S Y. Eigenvalue comparison theorems and its geometric applications. Math. Z., 1975, 143(3): 289-297

[6]

Ge Y, Shen Z M. Eigenvalues and eigenfunctions of metric measure manifolds. Proc. London Math. Soc., 2001, 82: 725-746

[7]

Li P, Yau S Y. Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace Operator. Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980 205-239

[8]

Ohta S, Sturm K T. Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds. Adv. Math., 2014, 252: 429-448

[9]

Ohta S, Sturm K T. Heat flow on Finsler manifolds. Comm. Pure Appl. Math., 2009, 62: 1386-1433

[10]

Schoen R, Yau S T. Lectures on Differential Geometry, 2004, Beijing: High Education Press

[11]

Shen Z M. Lectures on Finsler Geometry, 2001, Singapore: World Scientific Publishing

[12]

Shen Z M. Antonelli P. The Non-linear Laplacian for Finsler manifolds, The Theory of Finslerian Laplacians and Applications. Proc. Conf. on Finsler Laplacians, 1998, Netherlands: Kluwer Acad. Press

[13]

Shen Z M. Volume compasion and its applications in Riemann-Finsler geometry. Adv. Math., 1997, 128: 306-328

[14]

Wang G F, Xia C. A sharp lower bound for the first eigenvalue on Finsler manifolds. Nonlinear Analysis, 2013, 30(6): 983-996

[15]

Wu B Y, Xin Y L. Comparison theorems in Finsler geometry and their applications. Math. Ann., 2007, 337: 177-196

[16]

Yin S T, He Q. Some comparison theorems and their applications in Finsler geometry. Journal of Inequalities and Applications, 2014, 2014: 107

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/